

STS CONSULTANTS, LTD.

Completion Report Addendum I Lakeshore East 221 N. Columbus Drive Chicago, Illinois

> Lakeshore East LLC One West Superior, Suite 200 Chicago, Illinois 60610

STS Project No. 1-32193-XC September 23, 2004

EPA Region 5 Records Ctr.

231489

750 Corporate Woods Parkway Vernon Hills, Illinois 60061 847-279-2500 Phone 847-279-2510 Fax

September 23, 2004

Mr. Fred Micke, On-Scene Coordinator US Environmental Protection Agency - Region 5 77 W. Jackson Blvd., SE-5J Chicago, Illinois 60604-3590

RE: Completion Report Addendum 1 for Lakeshore East Project, 221 N. Columbus Drive, Chicago, Illinois - STS Project No. 1-32193-XC

Dear Mr. Micke:

Enclosed please find three copies of the Addendum to the Completion Report for the removal of radiologically-impacted soil at the Lakeshore East site. Upon receipt of the U.S. Environmental Protection Agency comments we will prepare a final revised report with a signed affidavit.

Please contact us with any questions you may have regarding this report or any other aspects of this project.

Sincerely,

STS CONSULTANTS, LTD.

Steven C. Kornder, Ph.D.

Project Manager

Douglas J. Hermann

Principal

Attachment: Completion Report Addendum I

Table of Contents

1.0	INT	RODU	CTION	1
	1.1	Backgr	round	1
	1.2	Locatio	on and Description of Property	2
	1.3	Previo	us Radiological Surveys and Reports	2
			_ ACTIONS	
			ork Documented Through Monthly Progress Reports	
			ructure Thorium Removal Grid System	
			val Procedures for Radiologically-Impacted Materials	
			h Field Drive	
			y Installations	
		•	son and Wick Drain Monitoring - North Field Boulevard.	
			h Slip Grading, Utility Installation and Construction	•
•			itoring	7
:	2.3.		Box Area and Golf Course Pond Surveys	
			ES OF RADILOGICALLY-IMPACTED SOIL REMOVE	
4.0	MΑ	TERIA	L POTENTIALLY REMAINING ON-SITE	11
	4.1	Southe	ern Slip Wick-drain Area	11
			TIES ENCOUNTERED	
6.0	AN.	ALYTIC	CAL RESULTS	13
(6.1	Soil Sa	ample Radiological Analytical Results	13
			Verification Sample	
			PA Verification Samples	
			e Laboratory Gamma Spectroscopy Results	
			ed Soil Samples	
		•	nitoring Analytical Results	
			Perimeter Air Monitoring	
			onal Air Monitoring	
			nnel Radiation Badge Results	
			ment Release Surveys	
			Y AND CONCLUSIONS	
FIGI	URE	S		
Figu	re 1		Limits of Exclusion Zones Remediated During Phase I	II and
			the Infrastructure Surveys	
Figu	re 2	:	Radiological Survey Showing 18-inch Lifts, Downhole	
			Borings and Areas not Covered by Walkover Survey	
APP	EN	DICES		
App			USEPA Signed Notification of Successful Verification	
• •			Sampling Forms	
App			Correspondence with USEPA	
App	end	ix C	Radiological Soil Sample Analyses	
			a. NUTRANL Analyses	
			i. Chronological List ii. Imported Fill Soil Analyses	
			b. RSSI Gamma Spectroscopy Analyses	
App	end	ix D	USEPA Contract Laboratory Analytical Data	
			(TO BE PROVIDED BY USEPA)	

Appendix E Air Monitoring Results

a. Perimeter Air Monitoring

. Personal Air Monitoring

Appendix F Equipment Release Survey Results

Appendix G Film Badge Results
Appendix H Shipping Manifests

COMPLETION REPORT ADDENDUM I LAKESHORE EAST 221 NORTH COLUMBUS DRIVE CHICAGO, ILLINOIS

1.0 INTRODUCTION

1.1 Background

The Completion Report¹ submitted to the USEPA in September 2003 documented radiological surveying and the removal of radiologically-impacted soil identified in the initial investigations and during the grading of fill-soil above the circa 1900 site elevation outside of the former slips. Within the former slip boundaries, radiological surveys of the surface were completed during grubbing (i.e., the removal of vegetation), but the subsurface fill-soil within the former slips was not surveyed in 18-inch lift surveys except in specific infrastructure/construction related project areas. Thus, future activities conducted within the boundaries of the former slips required monitoring for the presence of radiologically-impacted material whenever subsurface materials were disturbed. This Addendum Report (Addendum) provides a summary of the radiologically-impacted soil subsequently identified as the result of radiological monitoring conducted within the former slip boundaries. Specifically, the Addendum documents removal activities performed between March 10, 2003 and June 30, 2004.

The work documented in the Completion Report and the work reported in this Addendum was conducted in response to an Action Memorandum from U.S. Environmental Protection Agency (USEPA), dated July 17, 2002, entitled "Action Memorandum—Determination of Threat to Public Health or the Environment and Need for Time Critical Removal Action at the Family Golf Course/Lake Shore East Site Chicago, Cook County, Chicago, Illinois (Site Spill ID #05YH)". A copy of the Action Memorandum is included in Appendix A of the Completion Report¹. The work for this Addendum was conducted in general accordance with the procedures outlined in the Work Plan for Investigation and Removal of Radiologically Impacted Soil (Work Plan) prepared by STS Consultants, Ltd. (STS) dated June 24, 2002, revised September 13, 2002 and September 30, 2002, and approved by the USEPA in correspondence dated September 30, 2002.

¹ STS (September 19, 2003) Completion Report for Lakeshore East LLC, 221 N. Columbus Drive, Chicago, Illinois.

1.2 Location and Description of Property

The subject site consists of 25.18 acres located at the southwest corner of East Wacker Drive and Lake Shore Drive, at 221 North Columbus Drive in Chicago, Illinois. The site is bounded on the north by East Wacker Drive, currently occupied in part by a City of Chicago auto impound yard at ground level and Wacker Drive on an elevated viaduct. To the east is Lake Shore Drive. The south margin of the site is occupied by several residential high-rise buildings, East Randolph Street and commercial high-rise buildings. The west margin of the site is occupied by North Columbus Drive and commercial buildings.

Proposed development will consist of residential townhouses and high-rise structures, with potential for some commercial development to be included. An approximately six acre city park with an elementary school is planned for the interior portion of the site. City streets are planned for the site surrounding the park and school and providing access to the existing roadways surrounding the site.

1.3 Previous Radiological Surveys and Reports

This Addendum to the Completion Report addresses the removal of soil and fill materials that were found to be impacted with thorium and various radioactive decay progeny. The presence of elevated radioactivity was initially reported by USEPA in correspondence dated July 2, 2001. Subsequent radiological investigations, conducted by STS, have been submitted to and approved by the USEPA with the exception of the Completion Report which is currently undergoing review. The results of these investigations are contained in the following reports:

- Radiation Survey, 26-Acre Site, Southwest Corner Wacker Drive and Lake Shore Drive,
 221 N. Columbus Drive, dated September 19, 2001
- Addendum to Report for Results of Expanded Gamma Radiation Survey at 26-Acre Site,
 221 North Columbus Drive, dated October 2, 2001
- Test pit Exploration at 26-Acre Golf Course Site, Southwest Corner of Wacker Drive and Lake Shore Drive, Dated January 8, 2002
- Final Report for the Lakeshore East Additional Radiation Survey Investigation, Dated February 8, 2002
- Completion Report for Lakeshore East, Dated September 19, 2003.

2.0 REMOVAL ACTIONS

The first four reports listed in Section 1.3 comprise the initial exploration and survey phase (Phase I) of the radiological work conducted at the site (refer to Appendix E of the Completion Report). The Completion Report documented the removal actions undertaken during two additional investigation and remediation phases (Phases II and III). Phase II included the removal of the radiologically-impacted material identified by the Phase I activities, while Phase III consisted of the surveying of the fill soil above the circa 1900 site elevation outside of the former slips. Specifically, the Phase III work included the surveying of the fill soils in 18-inch lifts, and where necessary, the removal of impacted material. The general site grading (Phase III) was completed on March 7, 2003. Thus, this Addendum documents removal actions associated with radiologically-impacted materials identified as the result of radiological monitoring conducted during construction and infrastructure related activities performed within the former slips between March 10, 2003 and June 30, 2004.

2.1 Site Work Documented Through Monthly Progress Reports

The work completed in the course of this Addendum (March 2003 - June 2004) was documented through monthly progress reports submitted to USEPA. These reports presented the work completed the past month, and described the work planned to be completed in the coming month. The monthly reports also included the analytical results for both personal air monitors (PAMs) and for the high volume perimeter air monitors. The analysis results for the routine soil samples were not included in the monthly reports. The soil analyses for the verification samples were submitted with the request for USEPA sign-off of successful remediation, and therefore were not included with the monthly progress reports. The monthly reports are on file with USEPA and are not included as an attachment in this Addendum.

2.2 Infrastructure Thorium Removal Grid System

To document the removal and monitoring work at the site, a grid system for the site was established using the site construction coordinate system. This 200 by 200 foot grid system was the same as that used to document the work described in the Completion Report (STS, September 2003). The site-wide grid, consisting of partial to complete grids, 1 through 40, was further sub-divided into 100 foot by 100 foot quarters designated A through D, from the northwest quarter clockwise around to the southwest corner. Thus, the southeast quarter of grid 17 would be designated as 17C. Figure 1 presents a drawing of the site which includes the 200 by 200 foot grid system.

2.3 Removal Procedures for Radiologically-Impacted Materials

The cleanup threshold established by USEPA was 5 picoCuries per gram (pCi/g) of total radium (Ra-226 + Ra-228) above the background radium activity. The background total radium activity for the area was specified by USEPA as 2.1 pCi/g. Thus, the cleanup threshold for the site was established at 7.1 pCi/g total radium.

In the course of infrastructure and construction radiological monitoring, gamma readings characteristic of material exceeding the cleanup threshold were occasionally encountered. Initial actions included establishment of an exclusion zone at each of the elevated reading locations and notification of USEPA. The exclusion zones were marked with paint, and magenta and yellow radiation zone rope was used to delineate the perimeters. Entry into exclusion zones was limited to persons in proper personal protective equipment (PPE), in accordance with the Work Plan and Health and Safety Plan (STS, September 2002).

At each of the exclusion zones the radiologically-impacted material was removed to apparently clean limits by loading the material directly in shipping containers. Upon reaching the apparently clean limits, a "pre-EPA survey and sampling" was conducted by STS to show that the area met the cleanup standard. Each survey area was limited in size to an area no greater 100 square meters. After completion of the "pre-EPA" survey, the USEPA was notified and mobilized to the site to conduct a verification survey of the exclusion zone. The USEPA survey areas were the same as those sampled as part of the "pre-EPA" survey sampling effort.

For the verification surveys, five samples were collected from the each of the four quarters and center of the area and combined to form a single composite sample. In accordance with the Work Plan² SOP-223 (Verification Survey), the composite sample was homogenized by mixing the soil in a clean steel bowl, screened to minus ¼-inch, and five sub-samples were generated for radiological analysis. If the average of these five sub-samples was found to be less than the cleanup threshold of 7.1 pCi/g total radium, a notice of successful verification form was prepared for USEPA signature. The supporting analytical data and verification form were faxed to USEPA. After receipt and review, the USEPA signed the form and returned a faxed copy to STS, thus releasing the area for backfilling. Copies of the signed successful verification forms are provided in Appendix A.

2.3.1 North Field Drive

Construction and/or infrastructure related monitoring activities commenced on March 10, 2003 following the completion of the lift survey phase (Phase III). Initial activities involved the excavation of soil within

² STS (revised September 30, 2002) Work Plan for Investigation and Removal of Radiologically Impacted Soil, Lakeshore East LLC, 221 N. Columbus Drive, Chicago, Illinois.

⁴ K:\PROJECTS\132193xc\C132193XC072-Addendum_I_revised_final doc

the former northern slip to establish the grades necessary for future roadway development. The excavation focused primarily on the former northern slip areas within grids 9 through 11 (refer to Figure 1). Excavations proceeded in 18-inch lifts and were surveyed for elevated gamma radiation as the excavation proceeded. The soil was screened by personnel from Stan. A. Huber, Inc. (Huber) using a Ludlum 2221 meter and 2 x 2 NaI probe. The USEPA was notified via telephone on March 11, 2003 of the initial discovery of elevated gamma readings during excavation within grid 9 of the former north slip. Additionally, elevated gamma readings were observed during the excavation of a test pit in the northwest corner of grid 36 on March 24, 2003.

Excavation of the radiologically-impacted soil was initiated the week of March 24, 2003 and was completed on April 10, 2003. A total of 45 containers ("Baker boxes") of material were loaded during this removal action. Areas of excavation included the identified exclusion zones in the grids 9 through 11 and 36. Area air monitoring and personal monitoring were conducted during the remediation activities and are provided in Appendix E. No exceedances of the allowable limits for personal or area air monitoring were observed. Verification surveys were completed by the USEPA for the areas between March 27 and April 11, 2003. The grid location and date the notice of successful verification was signed by the USEPA are provided in Table 1.

Table 1
North Field Drive Grading
Notice of Successful Verification

Survey Grid Designation	USEPA Signature Date
9A#1	4/2/2003
9A#2	4/2/2003
9B	4/2/2003
9D/9C NE	4/15/2003
9D/9C SE	4/15/2003
9D/9C NW	4/15/2003
9D/9C SW	4/15/2003
10D#2	4/15/2003
11C#1	4/16/2003
11C#2	4/16/2003
11D	4/16/2003
10C	4/16/2003
10D#1	4/16/2003
9C	4/16/2003
10D#3	4/16/2003

Note: Each 200 by 200 foot grid is divided into four quadrants denoted with letters starting with the northwest corner (A) and proceeding in a clockwise direction (i.e., 9A, 9B, 9C and 9D).

2.3.2 Utility Installations

On June 16, 2003, monitoring recommenced for the installation of a sewer line in the former southern slip. On June 17 an area with elevated gamma readings was observed in a section of trench in grid 28C (i.e., southwest corner of grid 28). The area was designated an exclusion zone and the USEPA was notified. Excavation of the area commenced on June 18 and was completed on June 19, 2003. Two additional areas with elevated gamma readings were observed during monitoring in the former north slip (grid areas 9C and 10D) on June 26 and 27, 2003. Following USEPA notification, excavation of these areas was initiated on June 26 and completed on July 2, 2003.

High volume area air monitoring and personal monitoring were conducted during the handling of the impacted materials (refer to Appendix E). No exceedances of the allowable limits for personal or area air monitoring were observed. Verification surveys were completed by the USEPA for the areas on June 20 and July 10, 2003. The grid location and date the notice of successful verification was signed by the USEPA are provided in Table 2.

Table 2
Utility Installation
Notice of Successful Verification

Survey Grid Designation	USEPA Signature Date
C-218-73 (28C)	6/20/2003
C-201-31-#1 (9C)	7/10/2003
C-201-31-#2 (10D)	7/10/2003

2.3.3 Caisson and Wick Drain Monitoring - North Field Boulevard

In early July 2003 the installation of caissons for North Field Boulevard area was initiated in the southern portion of the site (grid areas 27 and 36). At several of the planned locations the caissons completely penetrated the fill materials in southern slip (Slip E) and extended into the native soil below. Monitoring of the spoil materials generated during the drilling of caissons in the slip fill materials was required since the subsurface materials within the slips had not been surveyed in 18-inch lifts prior to the construction project phases. Thus, the spoil from the caisson augers drilled in the former shipping slips was field screened as the soils were brought to the surface. The soil was screened by personnel from Huber using a Ludlum 2221 meter and 2 x 2 Nal probe. No readings were observed that would indicate contamination levels above the cleanup criteria of 7.1 pCi/g total radium.

Concurrent to the caisson installation, wick drains were installed to aid in the consolidation of the soil fill material within the former southern slip area. The wick drains were installed in the western section of the

southern slip, which occupies portions of grids 26 through 29 and 35 through 38 (refer to Figure 1). The installation of wick drains in the southern slip utilized a small diameter 30-foot boring and resulted in the generation of less than 1 cubic foot of spoil material per wick drain. The spoil was screened by personnel from Huber using a Ludlum 2221 meter and 2 x 2 Nal probe. Field survey personnel (Huber) observed a gamma reading of 27,000 counts per minute (cpm) in the spoil at one of the wick drains during the installation on July 28, 2003. This observed reading was slightly above the Ludlum/instrument specific cutoff value of 20,352 cpm, which was based on the USEPA cleanup level of 7.1 pCi/g total radium. The spoil material was observed to contain ash and brick fragments.

Figure 1 shows the position of the drain as 174feet (ft.) west of the property line along Harbor Drive and 109 ft. north of the southern property line along 400 East Randolph. The soil/spoil material with the elevated gamma readings was placed in a plastic bag. The ground surface area was then surveyed and determined to be consistent with background gamma levels. The bagged material was disposed with other radiologically-impacted material from the site. Spoil material generated at the surrounding series of drains installed about 5 feet away exhibited no evidence of elevated gamma readings. In fact, elevated gamma readings were not observed in the spoil of the other wick drains (over 1400) installed within the southern slip. Thus, the impacted material with elevated readings appeared to be isolated and potentially associated with the brick fragments.

The wick drain at which the elevated readings were observed is located within the proposed park drive right-of-way. The elevation of the surface at the drain is approximately 7 ft. Chicago City Datum (CCD). However, the final elevation for the roadway is proposed to be 23.9 ft. CCD. Thus, the existing surface will be covered with about 17 feet of additional fill soil that will essentially preclude the potential for future exposure. A call was placed to Mr. Fred Micke (USEPA) to discuss the investigation of the wick-drain in detail on August 5, 2003 (refer to confirming letter included in Appendix B). As discussed with the USEPA, it is unclear whether the slightly elevated readings were attributable to the presence of the brick material. In the call, the USEPA and STS agreed that additional investigation/removal activities were not warranted given the absence of elevated readings at the surface, the planned placement of additional fill soils, the short distance to the watertable, the isolated nature of the impacted material (based on the survey of surrounding spoil piles) and difficulties in conducting excavation activities within the newly stalled wick drain field.

2.3.4 North Slip Grading, Utility Installation and Construction Monitoring

Three areas with slightly elevated gamma reading (see grid 12 on Figure 1) were identified in the eastern portion of the former northern slip during general grading activities in the vicinity of a water utility installation on August 15, 2003. These areas were setup as exclusion zones 12C#1, 12C#2 and 12C#3.

The areas were designated as exclusion zones and the USEPA was notified of the discovery and intention to remediate. Equipment was mobilized to initiate the remedial activities on August 20, 2003. The remedial work was completed on August 25, 2003. Verification surveys for the remediated exclusion zones were performed by the USEPA contractor on August 27 and notices of successful verification were signed by the USEPA on August 29, 2003.

Table 3
North Slip and Utility Installation
Notice of Successful Verification

Survey Grid Designation	USEPA Signature Date
12C-#1	8/29/2003
12C-#2	8/29/2003
12C-#3	8/29/2003

During October 2003, radiological surveying was conducted during grading activities and at the locations of proposed caisson installations for the Shoreham construction project (Parcel G) within the former northern slip. Evidence of elevated gamma readings was observed at several small areas located in grid 13 located at the eastern end of the north slip on October 9, 2003. The areas were designated as exclusion zones 13D East, 13D West and Caisson C.2-3.

On October 29, 2003, remediation was initiated for the areas identified on October 9, 2003. The areas were designated as exclusion zones 13D East, 13D West and Caisson C.2-3. Remedial activities were conducted on October 29 - 31 and on November 7. Personal and area air monitoring conducted during the excavation of radiologically-impacted soil in October and on November 7, 2003 indicated no exceedances of the allowable limits (Appendix E). The location and date the notice of successful verification was signed by the USEPA are provided in Table 4.

Table 4
Caisson and Utility Installation
Notice of Successful Verification

Survey Grid Designation	USEPA Signature Date
13D East	11/12/2003
13D West	11/13/2003
Cassion C.2.3 (9C)	11/14/2003

2.3.5 Tee Box Area and Golf Course Pond Surveys

The initial investigation phase, Phase I, consisted of a 5-meter grid surface survey of the 26 acre Lakeshore East site (STS, September 19, 2001 and October 2, 2001). In reviewing the data for this report, two areas were found to not be covered by the 5-meter grid survey. The two areas include an

area just east of the tee box at the western end of the driving range where water was ponded during the initial survey and the golf course pond. Each of these areas is identified on Figure 2. As discussed in the Completion Report (STS September 2003), these areas are located outside of the former slip areas and at elevations that do not require 18-inch lift excavations (i.e., surface elevation below the 1900 site elevation). Thus, based on discussion with the USEPA, the Completion Report indicated that the radiological survey of the surface would be completed at each area following the removal of or draining of the water.

The 75 by 100 foot area just east of the tee box formerly covered with water was surveyed on October 1, 2003, when no standing water was present. The surface soil was screened by Huber personnel using a Ludlum 2221 meter and 2 x 2 Nal probe using the site-wide grid system according to the site grading survey procedures outlined in SOP-210 of the approved Work Plan (STS, September 2001). According to SOP-210, the area was traversed and the maximum reading observed in each 50 by 50 foot quadrant recorded. Field survey personnel (Huber) did not observe elevated gamma reading indicative of a radiological impact during the surveying. None of the readings exceeded twice background and the maximum reading observed in a 50 by 50 foot grid quadrant was 14,300 cpm. This maximum value was well below the Ludlum/instrument specific action level of 21,072 cpm, which was based on the USEPA cleanup level of 7.1 pCi/g total radium.

The golf course pond occupied an area approximately 200 by 350 feet located in the northwestern portion of the site (see Figure 2). A radiological survey of the surface sediment/soil of the former pond area was performed by personnel from Huber according to SOP-210 on December 8 and 16, 2003. The maximum reading observed in a 50 by 50 foot quadrant was 11,800 cpm. This value is well below the action level based on the USEPA cleanup level of 7.1 pCi/g total radium. Thus, no evidence of radiologically-impacted soil was observed in the sediment/soil within the footprint of the former golf course pond.

3.0 QUANTITIES OF RADILOGICALLY-IMPACTED SOIL REMOVED

A total of 49 containers, each containing approximately 15 cubic yards, of radiologically-impacted soil were removed from the Lakeshore East project site during the infrastructure and construction remediation conducted within the former slip areas between March 10, 2003 and June 30, 2004. The weight of the radiologically-impacted soil is estimated to be about 20.5 tons per container based on weights measured during previous removal efforts. Therefore, a total weight of 1006 tons was shipped during the infrastructure/construction monitoring phase. The material was transported to EnviroCare of Utah for disposal. Table 5 provides a summary of the remediation events and the number of containers of material excavated. Copies of the manifests for the containers of radiologically-impacted soil are provided in Appendix H.

Table 5
Quantity of Radiologically-Impacted Material Removed

Date	Infrastructure Activity	Location	Containers Loaded	Cumulative Project Total	Manifest Nos.
Pre-March 10, 2003*	-	<u>.</u>	-	205	Pre- 65902405
April 1 – 10 ,2003	North Field Drive Grading/Utility	Grids 9 – 11	17	222	65902405 - 65902421
June 16 – July 2, 2003	Utility Installation	Grids 9, 10 and 28	8	230	65902422 - 65902429
August 20 – 25, 2003	North Slip Grading	Grid 12	10	240	65902430 - 65902439
October 29 – November 7, 2003	North Slip Grading & Caisson Installation	Grids 9 and 13	14	254	65902440 - 65902453

Notes: * - Completion Report remediation totals for Phase II and Phase III.

4.0 MATERIAL POTENTIALLY REMAINING ON-SITE

4.1 Southern Slip Wick-drain Area

In accordance with the Work Plan, the objective of the project was to remove material identified as radiologically-impacted where feasible. In early July, wick drains were installed to aid in the consolidation of the fill materials within the former southern slip. The installation of wick drains resulted in the generation of less than 1 cubic foot (ft³) of spoil material per wick drain. Field survey personnel from Huber observed an elevated gamma reading of 27,000 cpm (versus a Ludlum/instrument specific cutoff value of 20,352 cpm based on the USEPA cleanup level of 7.1 pCi/g total radium) in the spoil at one of the wick drains on July 28, 2003. Figure 1 shows the position of the drain as 174 ft. west of the property line along Harbor Drive and 109 ft. north of the southern property line along 400 East Randolph.

The soil/spoil material with the elevated gamma readings was placed in a plastic bag. The ground surface area was then surveyed and determined to be consistent with background gamma levels. The bagged material was placed with other radiologically-impacted material from the site for disposal. Spoil material generated at the surrounding series of drains installed about 5 feet away exhibited no evidence of elevated gamma readings. In fact, elevated gamma readings were not observed in the spoil of the over 1400 other wick drains installed within the southern slip. The spoil material at the wick drain contained ash and brick fragments which were thought to be a possible contributor to the slightly elevated readings. Thus, the impacted material with slightly elevated readings appeared to be isolated and potentially associated with the brick fragment debris.

The wick drain at which the elevated readings were observed is located within the proposed park drive right-of-way. The elevation of the surface at the drain is approximately 7 ft. CCD. The final elevation for the roadway is proposed to be 23.9 ft. CCD. Thus, the existing surface will be covered with about 17 feet of additional fill soil that will essentially preclude the potential for future exposure. A call was placed to Mr. Fred Micke (USEPA) to discuss the investigation of the wick-drain issue in detail on August 5, 2003 (refer to confirming letter included in Appendix B). As discussed with the USEPA, it is unclear whether the slightly elevated readings were attributable to the presence of the brick material. In the call the USEPA and STS agreed that additional investigation/removal activities were not warranted given the absence of elevated readings at the surface, the planned placement of an additional thick layer of fill soil, the short distance to the watertable, the isolated nature of the impacted material (based on the survey of surrounding spoil piles) and difficulties in conducting excavation activities within the newly stalled wick drain field. However, USEPA did request that a notice be included within the deed for the parcel on which the potentially impacted soil will remain.

5.0 DIFFICULTIES ENCOUNTERED

No significant difficulties were encountered during the surveying or remediation of radiologically-impacted during the infrastructure phase of the project. The only site related issue that required discussion with the USEPA was the observation of elevated gamma readings within the soil at one wick drain. As discussed in Section 4.1, it was unclear whether the slightly elevated readings were attributable to the presence of the brick material. The wick-drain issue was discussed in detail in a telephone call with Mr. Fred Micke (USEPA) on August 5, 2003 (refer to confirming letter included in Appendix B). STS and the USEPA agreed that additional investigation/removal activities were not warranted given the absence of elevated readings at the surface, the absence of elevated readings at adjacent borings (about 5 feet away), the short distance to the watertable, difficulties in conducting excavation activities within the newly stalled wick drain field, and the planned placement of approximately 17 feet of clean fill soil over the wick drain area.

6.0 ANALYTICAL RESULTS

6.1 Soil Sample Radiological Analytical Results

Soil samples collected during the remediation process were analyzed by Stan A. Huber, Inc. (Huber) at an onsite laboratory by NUTRANL analysis to document the concentrations of the target cleanup radionuclides in the material being excavated. The NUTRANL analyses for the samples are presented in Appendix C by laboratory number, which is also equivalent to chronological order.

6.1.1 Pre-Verification Sample

The process of verification of remediation of the exclusion zone involved the collection and analysis of pre-verification samples to confirm that the removal had achieved the required cleanup levels. The impacted area (exclusion zone) was divided into sections as the area was remediated via the removal of the impacted soil. The exclusion zone was surveyed in areas not exceeding 100 square meters. The pre-EPA survey and sampling areas (i.e., pre-verification sample areas) were selected by the Field Team Leader (STS) and the Health Physics subcontractor (Huber). The USEPA was notified if the results of the pre-verification samples indicated the area met the cleanup standard. Thereafter, the USEPA mobilized to the site and conducted a verification survey of each respective area. The results of the pre-verification samples are listed in Appendix C.

6.1.2 USEPA Verification Samples

The USEPA verification areas were the same as the pre-EPA survey and sampling areas (i.e., pre-verification sample areas). USEPA conducted verification surveys and collected verification samples for the exclusion zones. In each exclusion area five samples were collected to create a composite for that area (i.e., one sample from each of the four quarters and a fifth from the center). The five samples forming the composite were then homogenized (mixed in a clean steel bowl) and five sub-samples were prepared. If the average of these five sub-samples was found to be less than the cleanup threshold of 7.1 pCi/g total radium, a successful verification form was prepared for USEPA signature. The supporting data and form were faxed to USEPA. Upon receipt of the signed form, the area was released for backfilling.

The NUTRANL results of the USEPA verification samples are included with copies of the signed notification of successful verification forms in Appendix A. These same samples were transferred to

USEPA under chain-of-custody for analysis at its contract laboratory. Those data will be included in Appendix D upon completion of the analysis and receipt of the data from USEPA.

6.2 Off-Site Laboratory Gamma Spectroscopy Results

Off-site laboratory analyses were periodically conducted to document the level of radiological-impact present in the soil. Three samples were collected from impacted soils within the exclusion zones and provided to RSSI of Morton Grove, Illinois. The analyses were performed by high resolution gamma spectroscopy and used the 71% Gamma Fraction Limit and 1.2 Library Energy Tolerance in accordance with USEPA specifications. The analysis results indicated total radium levels between 78.6 and 232.2 pCi/g. Copies of the analysis reports are included in Appendix C.

6.3 Imported Soil Samples

In accordance with the Work Plan, imported soil was to be subject to radiological analysis. Analyses were to be conducted at a minimum on each 10,000 cubic yards imported or for each separate source of borrow. Two borrow soil stockpile sample analyses were conducted during the reporting period covered by this Addendum. The analyses were conducted in July and October of 2003 and both indicated results well below the cleanup criteria of 7.1 pCi/g total radium. The radiological analyses for the material are provided in Appendix C.

6.4 Air Monitoring Analytical Results

6.4.1 Site Perimeter Air Monitoring

Perimeter air monitoring for airborne radioactivity was required whenever excavation of radiologically impacted material was being conducted. The Lakeshore East site is sufficiently large that the monitoring of the site perimeter would not characterize the potential airborne contaminants from work at discrete locations within the site. Therefore, air monitoring locations were established at the perimeters of the excavation areas. Thus, the widespread distribution of the exclusion zones activities necessitated that area air monitoring equipment be repositioned for each excavation to comply with the air monitoring plan.

The air samples were analyzed the day after the collection and again after four days to allow for the short-lived progeny to decay. The daily and weekly air concentrations were compared to the most limiting effluent concentration limit for thorium-232, which is 4E-15 μ Ci/ml based on 10 CFR 20 Appendix B Table

2 (Effluent Concentration Limits). No exceedances of the exposure limit for the site perimeter were documented for any day of monitoring. Perimeter air monitoring results are provided in Appendix E.

6.4.2 Personal Air Monitoring

Personal air monitoring (PAM) was conducted for persons working in exclusion zones and those persons involved in the directing of the loading of material into shipping containers. PAM data for radioactivity for both one-day and four-day analyses are included in Appendix E. These data show no exceedances of the allowable exposure limits for this project.

6.5 Personnel Radiation Badge Results

Personnel on site for extended periods during removal operations, and particularly personnel operating in the exclusion zones conducting gamma surveys or sampling, personnel assisting with the loading of the containers, and other persons potentially in contact with radiologically-impacted material were monitored with Optically Stimulated Luminesence (OSL) film badges throughout the Phase II and Phase III activities. Badges were replaced each calendar month. The analysis results for the final set of badges used during the Phasing III removal actions and the initial infrastructure surveys is included in Appendix G. No exceedances of the allowable exposures were measured for personnel as reported in Appendix G or the prior reports submitted in the Completion Report (Appendix M).

The removal actions undertaken during the infrastructure/construction phase of the project were short term in duration. Instead of issuing project specific film badges, the exclusion zone/survey personnel from Huber wore their badges which had been issued by their employer (Stan. A. Huber, Inc.). No exceedances of the allowable exposures were reportedly measured for these personnel.

6.6 Equipment Release Surveys

Excavating equipment used in the excavation of radiologically-impacted soil was required to be surveyed to confirm they were free of radiological impacts prior to being released from the site. This equipment was limited to the excavation buckets used to excavate and load the impacted material. The remainder of the excavator equipment was not used within the exclusion zones. To confirm the absence of impacts the treads and other portions of the equipment where soil had accumulated were surveyed for contamination.

For the excavator buckets, wipes were also taken in accordance with STS SOP 345, and alpha counts were made to confirm the absence of contamination. Limits listed in SOP 345 are currently those of 32 IAC 340 Appendix A (33 dpm/100 cm²). However, in practice with "as low as reasonably achievable" (ALARA), the most restrictive federal level of 20 dpm/100 cm² for removable contamination from Table 1 of the Nuclear Regulatory Commission's Regulatory Guide 1.86 was used for equipment release. A copy of the alpha count survey results were well below this most restrictive level and are included in Appendix F.

7.0 SUMMARY AND CONCLUSIONS

The work documented in the Completion Report and in this Addendum was conducted in response to an Action Memorandum from U.S. Environmental Protection Agency (USEPA), dated July 17, 2002, entitled "Action Memorandum—Determination of Threat to Public Health or the Environment and Need for Time Critical Removal Action at the Family Golf Course/Lake Shore East Site Chicago, Cook County, Chicago, Illinois (Site Spill ID #05YH)". The Phase II and III work was documented in a Completion Report submitted to the USEPA (STS, September 2003). The work described in the Completion Report and this Addendum was also conducted in accordance with the procedures outlined in the Work Plan for Investigation and Removal of Radiologically Impacted Soil (Work Plan) prepared by STS Consultants, Ltd. (STS) dated June 24, 2002, revised September 13, 2002 and September 30, 2002, and approved by the USEPA in correspondence dated September 30, 2002.

The depth of former slips, and subsequent presence of fill-soil below the water table, precluded the comprehensive radiological surveying of the fill-soil within the slip areas. Thus, future excavation that may disrupt historical fill within the former slips requires radiation monitoring of the excavation and appropriate management of any impacted soil encountered. This Addendum provides a summary of the remediation of radiologically-impacted soil subsequently identified as the result of radiological monitoring conducted within the former slip boundaries during infrastructure and construction activities. Specifically, this Addendum documents the removal actions performed between March 10, 2003 and June 30, 2004. The work described in this reported includes obtaining verification sign-off from USEPA for surveys of all of the areas at the site where radiologically-impacted soil were remediated.

The Addendum also summarizes the observations and subsequent discussions with the USEPA regarding a small volume (1 ft³) of spoil material generated during the installation of a wick drain in the southern slip that was observed to have a slightly elevated gamma reading. The impacted material appeared to be isolated and potentially associated with the brick fragment debris in that spoil. Surface readings and the spoil materials at over 1400 other wick drains, including those installed about 5 feet away, exhibited no evidence of elevated gamma readings. Thus, the USEPA agreed based on the available information (refer to Section 4.1) that additional investigation and/or removal activities were not warranted at this location.

Finally, the Addendum includes the surface soil survey results conducted in the former area of ponded water east of the tee box and the former golf course pond as requested by the USEPA. These surveys did not observe elevated gamma readings indicative of radiologically-impacts.

In conclusion, this Addendum and the work described herein, meets the work requirements of the July 17, 2002, Action Memorandum. Radiological surveying continues to be conducted when infrastructure or construction activities result in the disturbance of subsurface soil and/or fill within the former slip areas. Each of the radiologically-impacted areas identified during the period covered by this Addendum (March 2003 through June 2004) have been remediated and signed-off by the USEPA. Based on discussions regarding the site specific conditions at the one wick drain location, the USEPA agreed that further investigation was not warranted. As a result, STS Consultants (STS), Project Coordinator for this removal action, on behalf of Lakeshore East, LLC, requests written approval by the USEPA of the Addendum.

1

THE

NFRASTRUCTURE

MPERATIVE

Figures

①

THE

NFRASTRUCTURE

MPERATIVE

THE INFRASTRUCTURE

IMPERATIVE

APPENDIX A

USEPA Signed Notification of Successful Verification Sampling Forms

Infrastructure Remediation Notice of Successful Verification Summary Lakeshore East LLC

Location	Survey Grid Designation	USEPA Signature Date
******	9A#1	4/2/2003
	9A#2	4/2/2003
	9B	4/2/2003
	9D/9C NE	4/15/2003
	9D/9C SE	4/15/2003
	9D/9C NW	4/15/2003
	9D/9C SW	4/15/2003
	10D#2	4/15/2003
	11C#1	4/16/2003
	11C#2	4/16/2003
	11D	4/16/2003
	10C	4/16/2003
	10D#1	4/16/2003
Infrastructure	9C	4/16/2003
Excavations	10D#3	4/16/2003
	C-218-73	6/20/2003
	C-201-31-#1	7/10/2003
	C-201-31-#2	7/10/2003
	12C-#1	8/29/2003
	12C-#2	8/29/2003
	12C-#3	8/29/2003
	13D East	11/12/2003
	13D West	11/13/2003
	Cassion C.2.3	11/14/2003

FORM 223-1 NOTIFICATION OF SUCCESSFUL VERIFICATION SURVEY

Area Identification:	Section	JA-	
Date of Verification Survey	y: <u>3-27</u>	7-03	
Time of Verification Surve	9:00	An	am/pm
	avation was surveyed at soils have been removed		
Documents pertaining to the	his survey are attached fo	or review and appr	oval by the U.S. EPA.
Signed:	Mon		_ Date <u>3-27-</u> C
	. 4		(Print Name)
FIELD I	Tam Jarge		(Print Title)
SS		ITS Consultants, Ltd. Stience & Engineering	
The attached Verification April 2, 200 criteria as contained in the	Survey documents wer	e reviewed by U of this survey Indi	.S. EPA, Region V o cate that the verification
	anted to commence back	fill and restoration	work at this excavation
Signed;			
Fredrick	k a. Micke :		Date 4/2/03
FREDRICK	A. MICKE		(Print Name)
ON - SCENE	E COORDINATOR) N	(Print Title)
For U.S. EPA Region V			
			•

MAR-27-2003 02:56PM FAX:

ID: USEPA REGION 5

PAGE: 882 R=96%

Nutranl Gamma Spec Report- Lakeshore East Project

221 North Columbus Drive, Chicago, IL

Exclusion Zone Confirmatory Samples for March 27, 2003

Sample	Sample	Sample	Description	Weight	U-238	U-238	Th-232	Th-232	Ra-226	Ra-226	Total Radium	Total Radium
ID	Date	Group			Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty
691	3/27/2003	EPA	S2482 9A#1 EPA#1	26.7	3.6	2.22	1.25	0.59	1.55	0.83	2.8	1.018331969
692	3/27/2003	EPA	S2483 9A#1 EPA#2	23.4	-0.3	2.76	1.89	0.74	1.49	1.06	3.38	1.292749009
693	3/27/2003	EPA	S2484 9A#1 EPA#3	24.6	6.3	2.32	1	0.61	2.62	0.88	3.62	1.070747403
694	3/27/2003	EPA	S2485 9A#1 EPA#4	25.3	3.35	2.55	1.61	0.68	0.6	0.96	2.21	1.176435294
695	3/27/2003	EPA	S2486 9A#1 EPA#5	24.6	-0.59	2.46	1.74	0.67	1.09	0.94	2.83	1.154339638
Averag	je Total l	Radium	ı (Th-232+Ra-226) C	oncentratio	on for :		9A#1			2.97	pCi/g	

FORM 223-1 NOTIFICATION OF SUCCESSFUL VERIFICATION SURVEY

Area Identification:	SECTION	v JA	72	
Date of Verification Surv	ey:	3-27-6	23_	· .
Time of Verification Surv	/ey	2.00 1	·····	am/pm
The above-described ex survey indicated that all Criteria.		•		
Documents pertaining to	this survey are	attached for rev	lew and approve	al by the U.S. EPA,
Signed:	Culon			Date 3-27-C
John	ANDRAS			(Print Name)
FIELD	Tran	LAMPER		(Print Title)
हुत	S	STS Co	nteulkants, Ltd. • & Engineering	
The attached Verification April 2, 20 criteria as contained in the	<u> </u>	The results of th		EPA, Region V o
Authorization is hereby g	granted to comm	nence backfill an	d restoration wo	ork at this excavation
Signed:				,
Fredr	ut a.)	nicke		Date 4/2/03
FREDRI	CK A	MICKE		_ (Print Name)
ON-505	NE COOR	DINATOR		(Print Title)
For U.S. EPA Region V			•	
				·

MAR-27-2003 02:55PM FAX:

ID: USEPA REGION 5

Page 4

PAGE: 003 R=96%

Nutranl Gamma Spec Report- Lakeshore East Project

221 North Columbus Drive, Chicago, IL

Exclusion Zone Confirmatory Samples for March 27, 2003

Sample	Sample	Sample	Description	Weight	U-238	U-238	Th-232	Th-232	Ra-226	Ra-226	Total Radium	Total Radium
ID	Date	Group			Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty
696	3/27/2003	EPA	S2487 9A#2 EPA#1	23.7	3,01	2.26	0.78	0.6	0.79	0.86	1.57	1.048618138
697	3/27/2003	EPA	S2488 9A#2 EPA#2	25.6	5.58	1.65	0.38	0.43	1.39	0.62	1.77	0.754519715
698	3/27/2003	EPA	S2489 9A#2 EPA#3	24.7	0.31	1.62	1.43	0.44	0.68	0.62	2.11	0.760263112
699	3/27/2003	EPA	S2490 9A#2 EPA#4	22.5	0.63	2.26	1.14	0.62	1.63	0.88	2.77	1.076475731
700	3/27/2003	EPA	S2491 9A#2 EPA#5	24.6	0	2	0.62	0.54	2.07	0.78	2.69	0.948683298
Averag	e Total F	Radium	(Th-232+Ra-226) Cor	centratio	on for :		9A#2	_		2.18	pCi/g	

FORM 223-1 NOTIFICATION OF SUCCESSFUL VERIFICATION SURVEY

Area Identification:		
Date of Verification Survey:	3-27-03	
Ime of Verification Survey	9:00 m	am/pm
The above-described excava survey indicated that all soils Criteria.	tion was surveyed at the time and have been removed as required	d date indicated above. by the Site Removal Ad
ocuments pertaining to this s	survey are attached for review and	approval by the U.S. EP/
signed:	elen-	Date 3-22-
		(Print Name)
	•	(Print Title)
FIELD VE	LANVER.	(* 11170 111.0)
EF	STS Consultants, i Solutions through Science & Engineer	.ed.
he attached Verification Su April 2, 200	STS Consultants, I Solutions through Science & Engineer Drysy documents were reviewed to The results of this survey	ing by U.S. EPA, Region V
he attached Verification Succeeding 2, 200 riteria as contained in the UA	STS Consultants, I Solutions through Science & Engineer Drysy documents were reviewed to The results of this survey	by U.S. EPA, Region V
he attached Verification Su April 2, 200 riteria as contained in the UA authorization is heraby grante	STS Consultants, is solutions it wough Science & Engineer curvey documents were reviewed to . The results of this survey NO, have been met.	by U.S. EPA, Region V indicate that the verification work at this excavation.
he attached Verification Su April 2, 200 riteria as contained in the UA authorization is heraby grante ligned:	STS Consultants, is solutions it wough Science & Engineer curvey documents were reviewed to . The results of this survey NO, have been met.	by U.S. EPA, Region V
the attached Verification Successful 2, 200 ariteria as contained in the UA authorization is hereby granted bigned: Treduck	STS Consultants, is solutions it wough Science & Engineer curvey documents were reviewed to . The results of this survey NO, have been met.	by U.S. EPA, Region V indicate that the verification work at this excavation.

Page 4

Nutranl Gamma Spec Report- Lakeshore East Project

221 North Columbus Drive, Chicago, IL

Exclusion Zone Confirmatory Samples for March 27, 2003

Sample	Sample	Sample	Description	Weight	U-238	U-238	Th-232	Th-232	Ra-226	Ra-226	Total Radium	Total Radium
ID	Date	Group			Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty
701	3/27/2003	EPA	S2492 9B EPA#1	26.5	4.25	2.18	2.01	0.58	1.58	0.8	3.59	0.988129546
702	3/27/2003	EPA	S2493 9B EPA#2	27.4	6.08	2.6	-0.07	0.68	4.45	1.01	4.38	1.217579566
703	3/27/2003	EPA	S2494 9B EPA#3	26.8	1.18	1.91	1.73	0.51	1.76	0.73	3.49	0.890505474
704	3/27/2003	EPA	S2495 9B EPA#4	27.5	1.46	2.48	2.5	0.67	1.02	0.92	3.52	1.138112472
705	3/27/2003	EPA	S2496 9B EPA#5	26.7	1.27	2.61	2.22	0.7	1.1	0.98	3.32	1.204325537
Averag	e Total f	Radium	(Th-232+Ra-226) Con	centratio	on for :		9B			3.66	pCi/g	

APR-15-2003 14:25 FROM:USEPA REGION 5 04/11/2003 13:54 FAX 847 2792535

312 353 9176 212 CONZOFIXMI2

FORM 223-1

TO: 847 279 2535

P.5/5

()	NOT IFICATION OF SUCCESSFUL VERIFICATION BURVEY											
	Area Identification; Lakes Love East 90/9c NE											
	Date of Verification Survey: APR. 11, 2003											
	Time of Verification Survey 10:00 A mam/pm											
	The above-described excavation was surveyed at the time and date indicated above. The survey indicated that all soils have been removed as required by the Site Removal Action Criteria.											
	Documents pertaining to this survey are attached for review and approval by the USEPA.											
	Signed: TUS. Bygreen											
	Dale <u>Apr. 11, 2003</u>											
Θ	Print Name RICHARD G BERGGREEN											
	Print Title PROJECT COURDINATOR											
	STS Consultants, Ltd.											
	The attached Verification Survey documents were reviewed by USEPA, Region 5 or <u>Coxtl 15, 2003</u> . The results of this survey indicate that the verification criteria as contained in the UAO, have been met.											
	Authorization is hereby granted to commence backfill and restoration work at this excavation.											
	Date <u>April 15, 2003</u>											
	Print Name FREDRICK A. MICKE											
	Prim Title ON - SCENE COORDINATOR											
	For USEPA Region 5 - Fredrick a. Micke											

Page 3 of 3

K:WPDOC51PROJECT/132193XANVort PlanISOF-223-verification survey.dog

221 North Columbus Drive, Chicago, IL

Sample	Sample	Sample	Description	Weight	U-238	U-238	Th-232	Th-232	Ra-226	Ra-226	Total Radium	Total Radium
ID	Date	Group			Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty
784	4/11/2003	EPA	S2559 9D/9C NE EPA#1	26.7	1.64	3.4	1.53	0.9	0.08	1.26	1.61	1.548418548
785	4/11/2003	EPA	S2560 9D/9C NE EPA#2	27.8	5.16	3.55	0.57	0.91	1.64	1.32	2.21	1.603277892
786	4/11/2003	EPA	S2561 9D/9C NE EPA#3	27.4	3.87	2.52	0.97	0.66	0.44	0.94	1.41	1.148564321
787	4/11/2003	EPA	S2562 9D/9C NE EPA#4	27.2	0.63	2.32	1	0.63	1.43	0.9	2.43	1.098590005
788	4/11/2003	EPA	S2563 9D/9C NE EPA#5	28.1	-0.14	2.45	1.79	0.66	0.66	0.93	2.45	1.140394669
Averag	je Total F	ladium	(Th-232+Ra-226) Conc	entratio	n for :		9D/9C	NE		2.02	pCi/g	

APR-15-2003 14:25 FROM: USEPA REGION 5 04/11/2003 19:54 FAX 847 2/8/2030

312 353 9176

TO:847 279 2535

P.4/5

\mathbf{O}	FORM 223-1 NOTIFICATION OF SUCCESSFUL VERIFICATION SURVEY									
• •	Area Identification: LAKESHURE EAST 95/9C SE									
	Date of Verification Survey: APR. 11, 2003	_								
	Time of Verification Survey 10:00 A m am/p	m								
	The above-described excavation was surveyed at the time and date indicated above. The surindicated that all soils have been removed as required by the Site Removal Action Criteria.	r vey								
	Documents pertaining to this survey are attached for review and approval by the USEPA.									
	signed: Pl J S. Buggier									
	Date APR, 11 2003									
	Print Name RICHARD G. BERGGREEN	<u></u>								
	Prim Title PROFFEE COURDINATOR									
	STS Consultants, Ltd.									
	The attached Varification Survey documents were reviewed by USEPA, Region 5	on 1 as								
\leftarrow	Authorization is hereby granted to commence backfill and restoration work at this excavation.									
\	Date April 15, 2003	_								
	Print Name FREDRICK A. MICKE									
	Print Title ON - SCENE COOR DINATOR	_								
	For USERA Bearing Fredrick A Mickey									

Page 3 of 3

K:/WPDOCE/PROJECT\132183XAWork PlantSOP-223-vorticellon survey.doc

221 North Columbus Drive, Chicago, IL

Sample	Sample	Sample	Description	Weight	U-238	U-238	Th-232	Th-232	Ra-226	Ra-226	Total Radium	Total Radium
ID	Date	Group		1. 1	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty
789	4/11/2003	EPA	S2564 9D/9C SE EPA#1	29.6	-2.49	2.59	2.51	0.71	1.17	0.98	3.68	1.210165278
790	4/11/2003	EPA	S2565 9D/9C SE EPA#2	32.2	7.02	2.97	1.68	0.78	1.92	1.1	3.6	1.348480626
791	4/11/2003	EPA	S2566 9D/9C SE EPA#3	32.6	3.02	2.17	0.85	0.57	3.75	0.84	4.6	1.015135459
792	4/11/2003	EPA	S2567 9D/9C SE EPA#4	30.7	-0.4	3.59	0.69	0.96	3.1	1.42	3.79	1.714059509
793	4/11/2003	EPA	S2568 9D/9C SE EPA#5	30.3	6.38	2.53	2.59	0.65	0.69	0.9	3.28	1.110180166
Averag	je Total R	adium	(Th-232+Ra-226) Cond	entratio	n for :		9D/9C	SE		3.79	pCi/g	

APR-15-2003 14:25 FROM:USEPA REGION 5 04/11/2003 13:54 FAX 841 4134330

312 353 9176 TO:847 279 2535

P.3/5

\mathbf{a}	NOTIF	FORM 223-1 FICATION OF BUCCESSFUL VERIFIC	CATION SURVEY	
,	Area identification:	LAKESHORE EAST	90/9c Nu	<u>J</u>
	Date of Verification Survey:	APR. 11, 200	3	,
	Time of Verification Survey	10 AM		am/pm
	The above-described excar indicated that all soils have the second of th	vation was surveyed at the time ar seen removed as required by the Site	id date indicated above. Removal Action Criteria.	The survey
	·	survey are attached for review and a	pproval by the USEPA.	
	Signed: THI 9	Buzzrean		
	Date Apr.	11,2003		
	•	LO G. BERGGREE		
	Print Title PROT	ECT COORDWATER		
	STS Consultants, Ltd.			
	The attached Verification Contained in the UAO, have	n Survey documents were revi The results of this survey in been met.	ewed by USEPA, Reg ndicate that the verification	ion 5 on I criteria as
$\stackrel{\frown}{}$	Authorization is hereby gran	ted to commence backfill and restorat	ion work at this excevation.	
	Date april 15	, 2003		
	Print Name FREDR	ICK A. MICKE	·	
		CENE COORDINA		
	For USEPA Region 5	reduck a. Mick	L	

Page 3 of 3

KNVPDOCSPROJECT/132193XAWork Plan/SOP-723-verblossion survey.doc

221 North Columbus Drive, Chicago, IL

Sample	Sample	Sample	Description	Weight	U-238	U-238	Th-232	Th-232	Ra-226	Ra-226	Total Radium	Total Radium
ID	Date	Group			Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty
794	4/11/2003	EPA	S2569 9D/9C NW EPA#1	28.6	-2.08	2.37	1.67	0.64	1.28	0.91	2.95	1.112519663
795	4/11/2003	EPA	S2570 9D/9C NW EPA#2	26.7	5.28	2.68	0.39	0.7	2.03	1.02	2.42	1.237093368
796	4/11/2003	EPA	S2571 9D/9C NW EPA#3	26.4	-0.75	1.93	2.45	0.52	-0.91	0.72	1.54	0.888144132
797	4/11/2003	EPA	S2572 9D/9C NW EPA#4	26.6	5.88	2.55	0.62	0.67	2.84	0.97	3.46	1.17889779
798	4/11/2003	EPA	S2573 9D/9C NW EPA#5	25.7	-1.94	2.98	1.34	0.81	1.47	1.17	2.81	1.423024947
Averag	je Total R	adium	(Th-232+Ra-226) Cond	centratio	n for :		9D/9C	NW		2.64	pCi/g	

APR-15-2003 14:25 FROM:USEPA REGION 5 04/11/2003 13:54 FAX 847 2792535

312 353 9176 STS CONSULTANTS.

FORM 223-1

TO:847 279 2535

P.2/5 ₩ 005/008

•	NOTIFICATION OF SUCCESSFUL VERIFICATION SURVEY
,	Area Identification: LAKESHORE FAST 9D/9C SW
	Date of Verification Survey: Apr. 11, 2003
	Time of Verification Surveyam/pm
	The above-described excavation was surveyed at the time and dete indicated above. The survey indicated that all soils have been removed as required by the Site Removal Action Cateria.
	Documents pertaining to this survey are attached for review and approval by the USEPA. Signed: PLI 5. Byggeneral.
	Date APR. 11, 2003
	Print Name RICHARD G. BERGGREEN
	Print Title PROJECT COURDINATOR
	STS Consultants, Ltd.
	The attached Verification Survey documents were reviewed by USEPA, Region 5 or
+	Authorization is hereby granted to commence backfill and restoration work at this excavation.
	Date <u>April 15, 2003</u>
	Print Name FREDRICK A. MICKE
	Print Table ON-SCENE COORDINATOR
	For USEPA Region 5 Fredrick a. Micke

Page 3 of 3

K:WPDGCSPRQJECT\132190XAWark PlanSOF-223-verification survey.doc

1

221 North Columbus Drive, Chicago, IL

Sample	Sample	Sample	Description	Weight	U-238	U-238	Th-232	Th-232	Ra-226	Ra-226	Total Radium	Total Radium
ID	Date	Group			Activity_	Uncertainty	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty
799	4/11/2003	EPA	S2574 9D/9C SW EPA#1	21.6	0.93	3.74	1.26	1.04	0.65	1.44	1.91	1.776288265
800	4/11/2003	EPA	S2575 9D/9C SW EPA#2	24.4	4.55	3.34	0.04	0.89	3.31	1.31	3.35	1.583729775
801	4/11/2003	EPA	S2576 9D/9C SW EPA#3	22.3	2.01	2.79	0.33	0.74	2.32	1.1	2.65	1.325745074
802	4/11/2003	EPA	S2577 9D/9C SW EPA#4	25.3	0.5	2.57	2.11	0.71	1.97	0.99	4.08	1.218277472
803	4/11/2003	EPA	S2578 9D/9C SW EPA#5	24.5	7.41	3.18	1.22	0.82	-0.02	1.14	1.2	1.404279175
Averag	e Total R	adium	(Th-232+Ra-226) Conc	entratio	n for :		9D/9C	SW		2.64	pCi/g	

312 353 9176 STS CONSULTANTS. TO:847 279 2535

P.1/5

FORM 223-1 NOTIFICATION OF SUCCESSFUL VERIFICATION SURVEY

Area Identification:	LAKE SHORE	Ensr 1	OD "Z	
Date of Verification Survey:				
Time of Verification Survey	_			am/pm
The above-described excava indicated that all soils have be				The survey
Documents pertaining to this s	survey are attached for re	wiew and approval i	by the USEPA.	
Signed: Rhall	9. Byzien			
Date APR.	11,200	3		
Print Name RICHAR	0 G BARG	GREEN		
Print Title PROTECT	- COURDINA	TUR		
STS Consultants, Ltd.		·		
The attached Verification Opil 15, 2003 contained in the UAO, have be	Survey documents The results of this pen met.	were reviewed to s survey indicate t	by USEPA, Regi hat the verification	on 5 on crileria as
Authorization is hereby granted	d to commence backfill a	nd restoration work	at this excavation.	
Date april 15,	2003			Mayoran
Print Name FREDR	ICK A. A	11CKE		
Print Title <u>ON-SC</u>	ENE COOR	DINATOR	₹	<u> </u>
For LICEDA Duelos #	what a	Mucke		

Page 3 of 3

K:WPDOCSPROJECT1132193XAWork Plantil OP-223-verification survey.doc

221 North Columbus Drive, Chicago, IL

Sample	Sample	Sample	Description	Weight	U-238	U-238	Th-232	Th-232	Ra-226	Ra-226	Total Radium	Total Radium
_ ID	Date	Group			Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty
804	4/11/2003	EPA	S2579 10D#2 EPA#1	28.8	0.83	2.64	0.49	0.71	1.39	1.04	1.88	1.259245806
805	4/11/2003	EPA	S2580 10D#2 EPA#2	28.7	0.69	2.87	1.65	0.79	1.6	1.11	3.25	1.36242431
806	4/11/2003	EPA	S2581 10D#2 EPA#3	28.7	2.95	3.16	0.95	0.84	1.28	1.2	2.23	1.464786674
807	4/11/2003	EPA	S2582 10D#2 EPA#4	30.6	8.08	3.72	1	0.93	-0.87	1.29	0.13	1.590282994
808	4/11/2003	EPA	S2583 10D#2 EPA#5	30.6	0.85	2.36	1.72	0.65	0.25	0.89	1.97	1.102088926
Averag	je Total R	adium	(Th-232+Ra-226) Cond	centratio	n for :		10D#2			1.89	pCi/g	

Area Identification: IAKESHORE EAST // C.M./
Date of Verification Survey: Apr. 4 2003
Time of Vertification Survey 9 4m am/pr
The above-described excavation was surveyed at the time and date indicated above. The sur-indicated that all soils have been removed as required by the Site Removal Action Criteria.
Documents pertaining to this survey are attached for review and approval by the USEPA. Signed: PLIS. By 2003 Date App. 7, 2003
Print Name RICHARD G. BERGGREEN
Print Title PROJECT COORDINATOR
STS Consultants, Ltd.
The attached Verification Survey documents were reviewed by USEPA, Region 5 Contained in the UAO, have been met.
Authorization is hereby granted to commence backfill and restoration work at this excavation.
Date April 16, 2003
Print Name FREDRICK A. MICKE
Print Title ON - SCENE COORDINATOR
For USEPA Region 5 - Tredrick a. Micke

221 North Columbus Drive, Chicago, IL

Sample	Sample	Sample	Description	Weight	U-238	U-238	Th-232	Th-232	Ra-226	Ra-226	Total Radium	Total Radium
ID	Date	Group		_	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty
738	4/4/2003	EPA	S2517 11C#1 EPA#1	36.4	1.15	2.18	0.33	0.58	1.27	0.84	1.6	1.020784012
739	4/4/2003	EPA	S2518 11C#1 EPA#2	35.7	2.08	2.49	0.27	0.68	1.47	0.98	1.74	1.192811804
740	4/4/2003	EPA	S2519 11C#1 EPA#3	33.5	-1.69	1.64	0.9	0.45	0.36	0.64	1.26	0.7823682
741	4/4/2003	EPA	S2520 11C#1 EPA#4	36.5	8.6	3.15	1.46	0.8	-0.42	1.08	1.04	1.344023809
742	4/4/2003	EPA	S2521 11C#1 EPA#5	36.8	8.03	2.54	-0.4	0.64	3.25	0.97	2.85	1.16211015
Averag	e Total F	Radium	ı (Th-232+Ra-226) Co	ncentratio	on for .		11C#1		•••••••	1.70	pCi/g	

Area Identification:	LAKESHORE	EAST 11	C #2
Date of Verification Survey	APR.	4 , 2003	
Time of Verification Survey	9 11	ч	arn/pm
The above-described excelled indicated that all soils have			ndicated above. The surve Action Criteria.
Documents pertaining to th	s survey are attached for	review and approval b	y the USEPA.
Signed: RLL (5. Buggras		
Date Apr .	- ,		
· —			
Print Title Pro J	· · · · · · · · · · · · · · · · · · ·	- -	
STS Consultents, Ltd.			
	The results of t		y USEPA, Region 5 o nat the verification criteria a
Authorization is hereby gra	ited to commence backfill	and restoration work	at this excavation.
Date April 16.	2003		
Print Name FRED	RICK A. A	NCKE	
Print Title ON-SK			
For USEPA Region 5			

221 North Columbus Drive, Chicago, IL

Sample	Sample	Sample	Description	Weight	U-238	U-238	Th-232	Th-232	Ra-226	Ra-226	Total Radium	Total Radium
_ ID	Date	Group			Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty
743	4/4/2003	EPA	S2522 11C#2 EPA#1	31.8	5.93	2.59	1.5	0.67	2.74	0.97	4.24	1.17889779
744	4/4/2003	EPA	S2523 11C#2 EPA#2	32.3	10.52	3.22	0.68	0.81	2.34	1.17	3.02	1.423024947
745	4/4/2003	EPA	S2524 11C#2 EPA#3	32.5	1.86	2.77	1.63	0.74	1.41	1.03	3.04	1.268266534
746	4/4/2003	EPA	S2525 11C#2 EPA#4	29.4	5.47	2.27	1.9	0.59	1.99	0.83	3.89	1.018331969
747	4/4/2003	EPA	S2526 11C#2 EPA#5	32.9	-0.65	2.37	0.97	0.63	3.59	0.92	4.56	1.115033632
Averag	e Total F	Radium	(Th-232+Ra-226) Cor	ncentratio	n for :		11C#2	<u> </u>		3.75	pCi/g	

STS CONSULTANTS.

Area Identification: LAKESHORE EAST D
Date of Verification Survey: APR. 4, 2003
Time of Varification Survey 9 A m am/pm
The above-described excavation was surveyed at the time and date indicated above. The survey indicated that all soils have been removed as required by the Site Removal Action Criteria.
Documents pertaining to this survey are attached for review and approval by the USEPA.
signed: 724 5. Buggin
Date Apr. 7, 2003
Print Name RICHARD G. BERGGREEN
Print Title PROJECT COORDINATOR
STS Consultants, Ltd.
The attached Verification Survey documents were reviewed by USEPA, Region 5 on Opril 16, 2003 . The results of this survey indicate that the verification criteria as contained in the UAO, have been met.
Authorization is hereby granted to commence backfill and restoration work at this excavation.
Date <u>April 16, 7003</u>
Print Name FREDRICK A MICKE
Print Title ON- SCENE COORDINATOR
For USEPA Region 5 Treducte a: Micke

221 North Columbus Drive, Chicago, IL

Sample	Sample	Sample	Description	Weight	U-238	U-238	Th-232	Th-232	Ra-226	Ra-226	Total Radium	Total Radium
ID	Date	Group		ll	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty
748	4/4/2003	EPA	S2527 11D EPA#1	35.4	6.96	3.13	0.6	0.79	2.52	1.16	3.12	1.40346001
749	4/4/2003	EPA	S2528 11D EPA#2	34.6	0.11	2.98	2.36	0.82	0.65	1.13	3.01	1.396173342
750	4/4/2003	EPA	S2529 11D EPA#3	36.7	3	2.91	-0.28	0.78	2.95	1.17	2.67	1.406164997
751	4/4/2003	EPA	S2530 11D EPA#4	32.9	2.81	2.22	0.79	0.59	2.46	0.86	3.25	1.042928569
752	4/4/2003	EPA	S2531 11D EPA#5	35.3	5.03	2.89	0.4	0.75	2.18	1.11	2.58	1.339626814
						***************************************				***************************************		
Averag	je Total F	Radium	(Th-232+Ra-226) Co	ncentratio	on for :		11D			2.93	pCi/g	

04/16/2003 08:24 FAX 847 2792535 STS CONSULTANTS.

Area identific	ation;	LAKESHORE	EAST	10 C	
Date of Verifi	cation Survey:	APR.	4,	2003	
Time of Verific	ication Survey	9 A	m		am/pm
The above-d	lescribed dxcave I all soils have be	dan was surveyed en removed as requ	at the time a ired by the Site	nd date indicate Removal Action	d above. The survey Criteria.
Documents p	ertaining to this s	urvey are attached f	of review and a	pproval by the U	SEPA.
Signed;	RU 9	. Burga			
Date	APR.	7 2	203		
	RICHAR	D G.	BERGE	REEN	
-		CT COO			
ST\$ Consult					
april		The results of			EPA, Region 5 on verification criteria as
Authorization	is hereby granted	to commence back	fili and restore	ion work at this e	xcavation.
Date	Epril 16.	2003			·
Print Name_	FREDRI	CK A. A	NCKE		
Print Title	ON-SCE	NE COOF	DINAT	OR	
		reduck a			

221 North Columbus Drive, Chicago, IL

Sample	Sample	Sample	Description	Weight	U-238	U-238	Th-232	Th-232	Ra-226	Ra-226	Total Radium	Total Radium
ID	Date	Group			Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty
753	4/4/2003	EPA	S2532 10C EPA#1	32.2	6.17	2.92	1.74	0.74	0.58	1.03	2.32	1.268266534
754	4/4/2003	EPA	S2533 10C EPA#2	34.5	1.71	3.36	1.13	0.89	2.54	1.27	3.67	1.550806242
755	4/4/2003	EPA	S2534 10C EPA#3	32.6	-3.34	2	1.81	0.56	1.54	0.78	3.35	0.960208311
756	4/4/2003	EPA	S2535 10C EPA#4	31.1	6	3.97	0.66	1.02	1.51	1.45	2.17	1.772822608
757	4/4/2003	EPA	S2536 10C EPA#5	30.3	-0.27	3.33	0.33	0.89	1.89	1.29	2.22	1.56722685
Averag	e Total I	Radium	(Th-232+Ra-226) Con	centratio	on for :		10C			2.75	pCi/g	

FORM 223-1	
NOTIFICATION OF SUCCESSFUL VERIFICATION SUF	?VE Y

Area Identification:	LAKES	HORE	EASI	10 D #	
Date of Verification Survey					
Time of Verification Survey		7 AM			am/pm
The above-described excindicated that all soils have	avation was sur been removed a	veyed at the	time and dat the Site Remo	e indicated above. vai Actioπ Criteria.	. The surve
	is survey are atta	Jeren-	· · ·	al by the USEPA.	
Print Name RICL	IARD (G. Be	RGGR	<u> </u>	
Print Title Pro:	रहा (CORD	INATOR		
STS Consultants, Ltd.					
The attached Verification of the UAO, have	<u>03</u> . The res				
Authorization is hereby gra	nted to commend	e backfill and	restoration wo	rk at this excavation	n
Date april 16,	2003				
Print Name FRED	RICK A	MIC	KE		<u> </u>
Print Title ON-So	CENE C	00 RD/A	IATOR		
For USEPA Region 5	reduck	a, mu	_مع <i>ل</i>		

221 North Columbus Drive, Chicago, IL

Sample	Sample	Sample	Description	Weight	U-238	U-238	Th-232	Th-232	Ra-226	Ra-226	Total Radium	Total Radium
ID	Date	Group			Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty
758	4/4/2003	EPA	S2537 10D#1 EPA#1	31.6	-1.08	2.16	2.44	0.6	0.36	0.82	2.8	1.016070864
759	4/4/2003	EPA	S2538 10D#1 EPA#2	29.8	6.57	2.69	1.92	0.7	2	0.98	3.92	1.204325537
760	4/4/2003	EPA	S2539 10D#1 EPA#3	34.5	1.99	3.3	1.56	0.9	2.96	1.26	4.52	1.548418548
761	4/4/2003	EPA	S2540 10D#1 EPA#4	33.6	-1.67	3.02	1.24	0.84	3.83	1.21	5.07	1.472990156
762	4/4/2003	EPA	S2541 10D#1 EPA#5	34.3	-2.79	2.85	1.38	0.79	1.75	1.15	3.13	1.395206078
Averag	e Total F	R <u>a</u> dium	(Th-232+Ra-226) Cond	entratio	n for :		10D#1			3.89	pCi/g	_

FORM 223-1	
NOTIFICATION OF SUCCESSFUL VERIFICATION SURVI	E,

,	Area Identification: LAKESHORE EAST 9C	
	Date of Vertication Survey: APR. 4, 2003	
	Time of Verification Survey 9 Am	m/pm
	The above-described excavation was surveyed at the time and date indicated above. The indicated that all solls have been removed as required by the Site Removal Action Criteria.	surve
	Documents pertaining to this survey are attached for review and approval by the USEPA. Signed: 7. Bugger	
	Date APR 7, 2003	
	Print Name RICHARD G. BERGGREEN	
	Print Title PROJECT COORDINATUR	
	STS Consultants, Ltd.	
	The attached Verification Survey documents were reviewed by USEPA, Region Contained in the UAO, have been met.	5 or erla 2:
}	Authorization is hereby granted to commence backfill and restoration work at this excavation.	
,	Date April 16, 2003	
	Print Name FREDRICK A. MICKE	
	Print Title ON-SCENE COORDINATOR	
	For USEPA Region 5 Fredrick a. Micke	

221 North Columbus Drive, Chicago, IL

Sample	Sample	Sample	Description	Weight	U-238	U-238	Th-232	Th-232	Ra-226	Ra-226	Total Radium	Total Radium
D	Date	Group			Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty	Activity_	Uncertainty
763	4/4/2003	EPA	S2542 9C EPA#1	28.6	2.55	2.98	0.8	0.79	1.44	1.14	2.24	1.386975126
764	4/4/2003	EPA	S2543 9C EPA#2	27.7	2.13	2.5	0.01	0.67	2.83	1.02	2.84	1.220368797
765	4/4/2003	EPA	S2544 9C EPA#3	31.2	5.35	3.98	1.4	1.01	1.07	1.45	2.47	1.767088
766	4/4/2003	EPA	S2545 9C EPA#4	29.8	4.59	2.86	0.16	0.78	4.1	1.13	4.26	1.373062271
767	4/4/2003	EPA	S2546 9C EPA#5	32.6	0.09	3.5	1.81	0.93	1.58	1.31	3.39	1.606549097
Averag	e Total I	Radium	(Th-232+Ra-226) Co	ncentratio	on for :	*	9C			3.04	pCi/g	

	FORM 223-1	1	
NOTIFICATION OF S	CCESSFUL V	VERIFICATION	SURVEY

Area Identification: LAKE SHORE EAST 10 D#3
Date of Verification Survey: APR. 4, 2003
Time of Verification Survey 9 Am am/pm
The above-described excavation was surveyed at the time and data indicated above. The survey indicated that all splis have been removed as required by the Site Removal Action Criteria.
Documents pertaining to this survey are attached for review and approval by the USEPA. Signed: Bugger
Date APR. 7, 2003
Print Name RICHARD G. BERGGREEN
Print Title PROJECT COORDINATOR
STS Consultants, Ltd.
The attached Verification Survey documents were reviewed by USEPA. Region 5 or contained in the UAO, have been met.
Authorization is hereby granted to commence backfill and restoration work at this excavation.
Date April 16, 2003
Print Name FREDRICK A. MICKE
Print Title ON - SCENE COORDINATOR
For USEPA Region 5 Fredrick a. Micke

221 North Columbus Drive, Chicago, IL

Sample	Sample	Sample	Description	Weight	U-238	U-238	Th-232	Th-232	Ra-226	Ra-226	Total Radium	Total Radium
۵l	Date	Group			Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty
768	4/4/2003	EPA	S2547 10D#3 EPA#1	34.6	1.85	2.04	1.65	0.55	1.47	0.77	3.12	0.946255779
769	4/4/2003	EPA	S2548 10D#3 EPA#2	34.8	5.31	2.57	1.91	0.68	0.3	0.94	2.21	1.160172401
770	4/4/2003	EPA	S2549 10D#3 EPA#3	34.2	4.35	1.83	0.9	0.48	2.12	0.69	3.02	0.840535544
771	4/4/2003	EPA	S2550 10D#3 EPA#4	33.4	-0.07	2.59	1.78	0.69	1.69	0.97	3.47	1.190378091
772	4/4/2003	EPA	S2551 10D#3 EPA#5	35.7	4.8	3.24	1.45	0.86	0.62	1.2	2.07	1.476346843
Averag	e Total F	Radium	(Th-232+Ra-226) Con-	centratio	on for :		10D#3	·		2.78	pCi/g	

Area Identification: LSE	C-218-73 (EP)	#1-EPA-#5
Date of Verification Survey:	6/20/03	
Time of Verification Survey _	8-30	artiom
		e and date indicated above. The uired by the Site Removal Action
Documents partaining to this	survey are attached for review	and approval by the U.S. EPA.
Signed:	•	
Steven C	Konder	(Print Name)
Project Ma	pauger	(Print Title)
Sa	875 Consut Belutions through Science & E	
The attached Verification Successful Control of the UA	The results of this s	wed by U.S. EPA, Region V osurvey indicate that the verification
Authorization is hereby grante	ed to commence backfill and n	estoration work at this excavation
Signed:		/ /
Fredrick a.	micke	Date 6/20/03
FREDRICK-A	MICKE	(Print Name)
•		
ON-SCENE	COORDINATOR	(Print Title)

JUN-28-2863 14:55 06/20/2003 14:16 FAI 630 2	06/20/2003 14:40 KAX 84
518 231 3890	847 2782535
Ħ	

. JUN-20-2003

16:37

STS

);	1
TotU	华
-1.13 1.28 -1.39 -1.60 1.04	2.50 2.39 2.58 1.70 2.23

MCC WEST CHICAGO PROJ.

STS CONSULTANTS.

847 279 2535

847 279 2535 001/001 P.21/81 P.83/83

Jate: 6/20/03	C-218-73		Nu	trant G	amma	Spec	Report	:				Pr	ige;	1
Samp & Date	Description.	Weight	U-238	#	D-M	} ≠	R-126	长	K-12	軠	Tot Rad	± ′-	TotU	판
3360 6/20/08	RPA#1	28.50	0.55	> 1.22	a.co	0.29	1.00	0.47	29.00	8,21	1.00	0.55	-1.13	2.50
3361 6/20/03		29.30	1.12	LIT	0.00	0.28	1.00	0.44	21,40	7.54	1.00	0.52	1.28	2.39
3362 6/20/03		28.90	40.68	1.22	0.00	0.29	U.DÜ	0.47	21,60	7,79	1.00	0.55	-1.39	2.50
3363 6/20/03		29.10	-1.27	X0.8 3	0.00	0.20	0.00	0.34	15.00	6,37	8.00	0.39	-1.60	1.70
3363 6/20/03		28.50	0.31	1,09	0.00	9.26	1.00	0.40	38.00	7.49	1.00	0.48	1,04	2.23

Reviewed

TOTAL P.01

TOTAL P.03

Area Identification: LSE C-20/(31) #/ (EP)	9#1-#5)
Date of Verification Survey: 7/8/03	
Time of Verification Survey	amam
The above-described excavation was surveyed at the time and d survey indicated that all soils have been removed as required by Criteria.	
Documents pertaining to this survey are attached for review and app	proval by the U.S. EPA.
Signed:	
Atolle Land	Date 7/9/03
Steven C. Kornder	(Print Name)
Project Manager	(Print Title)
STE Consultants, Ltd. Solutions through Science & Engineering	
The attached Verification Survey documents were reviewed by fully 10, 2003 The results of this survey incriteria as contained in the UAO, have been met.	U.S. EPA, Region V o
Authorization is hereby granted to commence backfill and restoration	n work at this excavation
Signed: - Fredrick a. Micke	Date _7/10/03
FREDRICK A. MICKE	(Print Name)
ON-SCENE COORDINATOR	(Print Title)
For U.S. EPA Region V	•

Page 4

Area Identification: LSE C-			
Date of Verification Survey:		,	
Time of Verification Survey	_		an/pm
The above-described excavation was survey indicated that all soils have I Criteria.			
Documents pertaining to this survey a	are attached for i	evlew and approva	by the U.S. EPA.
Signed:		•	
Thoch			Date 7/9/03
Steven C Kornd	<u> </u>		(Print Name)
Project Manage			(Print Title)
	•		
	8TS Solutions through Sci	Consultants, Ltd.	
	Solutions through Selections through Selections through Selection Selections of the Selection Selection Selection Selections through Selections th	stee & Engineering	
criteria as contained in the UAO, have	ocuments were . The results of e been met.	reviewed by U.S. this survey indicate	that the verification
criteria as contained in the UAO, have	ocuments were . The results of e been met.	reviewed by U.S. this survey indicate	that the verification
criteria as contained in the UAO, have Authorization is hereby granted to con Signed:	Solutions through Selections through Selections through Selection Commence backfill	reviewed by U.S. this survey indicate and restoration wor	that the verification
criteria as contained in the UAO, have Authorization is hereby granted to consigned: —treduck A. Mickel	Solutions through Selections through Selections through Selection The results of a been met. In manage backfill	reviewed by U.S. this survey indicate and restoration wor	that the verification k at this excavation Date $\frac{7/1003}{100}$
criteria as contained in the UAO, have Authorization is hereby granted to con	Solutions through Selections through Selections through Selection The results of the been met. The results of the been met. The results of the been met.	reviewed by U.S. this survey indicate and restoration wor	that the verification is that the verification is the excavation of the excavation o

Exclusion Zone Confirmatory Samples for July 8, 2003

Sample	Sample	Sample	Description	Weight	U-238	U-238	Th-232	Th-282	Re-226	Ra-228	Total Redium	Total Radium
ID	Date	Group		[Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty
831	7/8/03	EPA	S2593 C-201(31)#1 EPA #1	31.4	3.06	2.15	2.11	0.57	0.31	0.79	2.42	0.97416631
832	7/8/03	EPA	S2594 C-201(31)#1 EPA #2	30.7	-3.6	23	2.69	0.65	1.65	0.9	4.34	1.110180168
833	7/8/03	EPA	S2595 C-201(31)#1 EPA #3	29.5	3.68	2.72	1.59	0.74	1.12	1.04	2.71	1.278401191
B34	7/8/03	EPA	S2596 C-201(31)#1 EPA #4	28,8	-0.44	2.79	1.48	0.78	1.24	1.1	2.72	1.348480626
835	7/8/03	EPA	S2597 C-201(31)#1 EPA #5	29.9	6.41	2.69	1.6	0.7	1.78	1	3.38	1.220655562

Average Total Radium (Th-232+Ra-226) Concentration for :

C-201(31) #1

3.11

pCi/g

Sample	Sample	Sample	Description	Welght	U-238	U-238	Th-232	Th-232	Ra-228	Ra-226	Total Radium	Total Radium
ai	Date	Group			Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty
836	7/8/03	EPA	S2598 C-201(31)#2 EPA #1	29.8	-1.81	2.48	1.35	0.68	1.7	1	3.05,	1.209297317
837	7/8/03	EPA	S2599 C-201(31)#2 EPA #2	28.6	2.65	2.28	0.78	0.61	1.41	0.88	2.19	1.070747403
838	7/8/03	EPA	S2600 C-201(31)#2 EPA #3	28.5	6.19	2.1	0.68	0.54	0.09	0.78	1.65	0.948683298
839		EPA	S2801 C-201(31)#2 EPA #4	29.3	3.55	2.68	-0.29	0.71	3.39	1.09	3.1	1.300845879
840	7/8/03	EPA	S2602 C-201(31)#2 EPA #5	28.3	2.61	2.31	1.08	0.61	1.41	0.9	2.47	1.087244223
Averag	je Total I	Radium	(Th-232+Ra-226) Con	centration	on for :	Transfer Street, S. No. of Street, Street, S. Street, S	C-201	(31) #2		2,49	pCi/g	

Area Identification: <u>LSE /2C-</u>
Date of Verification Survey: 8/27/03
Time of Verification Survey 9:00
The above-described excavation was surveyed at the time and date indicated above. The survey indicated that all soils have been removed as required by the Site Removal Action Criteria.
Documents pertaining to this survey are attached for review and approval by the U.S. EPA.
Date 8/25/03
Stove Kornder (Print Name)
Propert Manager (Print Title)
STE Consultants, Ltd. Salutions through Science & Engineering
The attached Verification Survey documents were reviewed by U.S. EPA, Region V o
The attached Verification Survey documents were reviewed by U.S. EPA, Region V or Aug 29, 2003 The results of this survey indicate that the verification interior as contained in the UAO, have been met.
The attached Verification Survey documents were reviewed by U.S. EPA, Region V or Que 29, 2003. The results of this survey indicate that the verification with a contained in the UAO, have been met. Authorization is hereby granted to commence backfill and restoration work at this excavation.
The attached Verification Survey documents were reviewed by U.S. EPA. Region V or Dug 29, 2003. The results of this survey indicate that the verification in the UAO, have been met. Authorization is hereby granted to commence backfill and restoration work at this excavation signed:
The attached Verification Survey documents were reviewed by U.S. EPA, Region V of Aug 29, 2003. The results of this survey Indicate that the verification interial as contained in the UAO, have been met. Authorization is hereby granted to commence backfill and restoration work at this excavation signed: Preduck A. Micks. Date 8/29/03

Area Identification: LSE - 12C#2	
Date of Verification Survey: 8/27/03	
ime of Verification Survey 9:00	ampm
the above-described excavation was surveyed at the time survey indicated that all soils have been removed as requirateria.	
Occuments pertaining to this survey are attached for review	and approval by the U.S. EPA.
Signed:	, ,
Ala Alamana de la companya della companya della companya de la companya della com	Date
Steve Kornder	(Print Name)
Project Marager	(Print Title)
STS Consults Solutions through Adence & En	
The attached Verification Survey documents were review Quo 29, 2003 . The results of this suriteria as contained in the UAO, have been met.	ed by U.S. EPA, Region V urvey indicate that the verificati
authorization is hereby granted to commence backfill and re	storation work at this excavatio
Signed:	
Fredrick a. Micke	Date <u>8/29/03</u>
FREDRICK A. MICKE	(Print Name)
ON-SCENE COORDINATOR	(Print Title)
For U.S. EPA Region V	•
	1

Vertication Survey Procedure 227-1

Area Identification: LSE 12C#3	. *
Date of Verification Survey: 8/27/03	
Time of Verification Survey 9-00	am)pm
The above-described excavation was surveyed at the time a survey indicated that all soils have been removed as require Criteria.	
Documents pertaining to this survey are attached for review an	d approval by the U.S. EPA.
Signed:	
	Date <u>8/28/03</u>
Steve Kornder	(Print Name)
Project Manage	(Print Title)
8TS Consultanti Solutional through Science & English	-
	by U.S. EPA, Region V o
The attached Verification Survey documents were reviewed 29, 2003. The results of this surv	by U.S. EPA, Region V oney indicate that the verification
The attached Verification Survey documents were reviewed 29, 2003. The results of this surverificial as contained in the UAO, have been met.	by U.S. EPA, Region V oney indicate that the verification
The attached Verification Survey documents were reviewed 29, 2003. The results of this surverifier as contained in the UAO, have been met. Authorization is hereby granted to commence backfill and restored.	by U.S. EPA, Region V oney indicate that the verification
The attached Verification Survey documents were reviewed 29, 2003. The results of this surverifier as contained in the UAO, have been met. Authorization is hereby granted to commence backfill and restance. Signed:	by U.S. EPA, Region V oney indicate that the verification work at this excavation
The attached Verification Survey documents were reviewed 29, 2003. The results of this surveriferia as contained in the UAO, have been met. Authorization is hereby granted to commence backfill and restance: Tradrick A. Micke	by U.S. EPA, Region V of ey indicate that the verification work at this excavation. Date 8/29/03
The attached Verification Survey documents were reviewed Aug 29, 2003. The results of this surveriferia as contained in the UAO, have been met. Authorization is hereby granted to commence backfill and restorations. Signed: Tradrick A. Micke FREDRICK A. MICKE	by U.S. EPA, Region V oney indicate that the verification work at this excavation. Date 8/29/03 (Print Name)
The attached Verification Survey documents were reviewed Aug 29, 2003. The results of this surveriferia as contained in the UAO, have been met. Authorization is hereby granted to commence backfill and restorations. Signed: Tradrick A. Micke FREDRICK A. MICKE ON-SCENE COORDINATOR	by U.S. EPA, Region V oney indicate that the verification work at this excavation. Date 8/29/03 (Print Name)
The attached Verification Survey documents were reviewed Aug 29, 2003. The results of this surveriferia as contained in the UAO, have been met. Authorization is hereby granted to commence backfill and restorations. Signed: Tradrick A. Micke FREDRICK A. MICKE ON-SCENE COORDINATOR	by U.S. EPA, Region V oney indicate that the verification work at this excavation. Date 8/29/03 (Print Name)

Exclusion Zone Confirmatory Samples for August 27, 2003

Sample	Sample	Sample		Description	Weight	U-238	U-238	Th-232	Th-232	Ra-226	Ra-226	Total Radium	Total Radium
ID	Date	Group			ļ	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty
859	8/27/03	EPA	\$2615	12C#1 EPA#1	29.5	1.6	2.06	0.63	0.56	3.01	0.83	3.64	1.00124922
860	8/27/03	EPA	S2616	12C#1 EPA#2	28.7	4.21	1.93	1.77	0.51	1.05	0.72	2.82	0.88232647
861	8/27/03	EPA	S2617	12C#1 EPA#3	26.4	2.59	2.58	1.42	0.68	0.95	0.97	2.37	1.18460964
862	8/27/03	EPA	S2618	12C#1 EPA#4	30.3	3.98	2.49	1.56	0.65	1.07	0.92	2.63	1.126454615
863	8/27/03	EPA	S2619	12C#1 EPA#5	25.5	-2.24	2.26	1.83	0.63	1.14	0.91	2.97	1.106797181

Average Total Radium (Th-232+Ra-226) Concentration for: 12C#1 2.89 pCl/g

Sample	Sample	Sample	Description	Welght	U-238	U-238	Th-232	Th-232	Ra-226	Ra-226	Total Radium	Total Radium
ID	Date	Group			Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty
864	8/27/03	EPA	\$2620 12C#2 EPA#1	35.3	3.42	2.14	0.63	0.58	3.19	0.85	3.82	1.029028668
865	8/27/03	EPA	S2621 12C#2 EPA#2	37.2	3.67	3.23	1.92	0.86	2.41	1.23	4.33	1.500833102
866	8/27/03	EPA	S2622 12C#2 EPA#3	35.5	2.69	3.14	3	0.82	0.3	1.12	3.3	1.388092216
867	8/27/03	EPA	82623 12C#2 EPA#4	37.9	4.36	2.61	1.09	0.69	2.49	1	3.58	1.214948559
868	8/27/03	EPA	S2624 12C#2 EPA#5	38.1	4.3	2.37	1,11	0.62	2.78	0.91	3.89	1.101135777

Average Total Radium (Th-232+Ra-226) Concentration for: 12C#2 3.78 pCi/g

Sample	Sample	Sample		Description	Weight	U-238	U-238	Th-232	Th-232	Ra-226	Ra-226	Total Radium	Total Radium
ID	Date	Group			11	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty
869	8/27/03	EPA	\$2625	12C#3 EPA#1	23.7	-1.73	2.32	1.98	0.65	1.48	0.94	3.44	1.142847321
870	8/27/03		S2626	12C#3 EPA#2	22.5	4.25	2.11	0.51	0.55	1.38	0.82	1.89	0.987370245
871	8/27/03	EPA	S2627	12C#3 EPA#3	22.3	6.08	2.56	-0.07	0.66	2.85	1	2.78	1,198165264
872	8/27/03	EPA	S2628	12C#3 EPA#4	23.5	1.27	3.25	0.42	0.87	2.54	1,29	2.96	1,555956298
873	8/27/03	EPA	S2629	12C#3 EPA#5	22.8	-0.24	3.1	1.79	0.86	1.74	1.21	3.53	1,484486443

Average Total Radium (Th-232+Ra-226) Concentration for: 12C#3 2.92 pCi/g

STS

847 279 2535

P.02/04

Т

TO:847 279 2535

P.2/4

NOV-12-2003 09:33 FROM:USEPA REGION 5

3123539176 STS CONSULTANTS

⊘ 002/005

entification 45E =	130 East	
Verification Survey:		
Verification Survey		
ove-described excavation indicated that all soils ha	n was surveyed at the time a ave been removed as require	
ents pertaining to this sun	vey are attached for review a	nd approval by the U.S. EPA.
the Some		Date 11/11/03
		
		
corect Manage		(Print Title)
Roject Manage	6TS Consultan Salutions through Science & Eng	nts, Ltd.
Name of Verification Supplemental	Saludons through Science & Engrey documents were reviews The results of this su	nts, Ltd. pincering ed by U.S. EPA, Region V
Itached Verification Surv 1/12/03 as contained in the UAO	Saludons through Science & Engrey documents were reviews The results of this su	ed by U.S. EPA, Region V every indicate that the verificat
Itached Verification Surv 1/12/03 as contained in the UAO rization is hereby granted	Solutions through Science & Engrey documents were reviews. The results of this sult, have been met. to commence backfill and res	ed by U.S. EPA, Region V every indicate that the verificate
Itached Verification Surv 1/12/03 as contained in the UAO rization is hereby granted	Solutions through Science & Engrey documents were reviews. The results of this sult, have been met. to commence backfill and res	ed by U.S. EPA, Region V every indicate that the verificate
Itached Verification Surv 1/12/03 as contained in the UAO rization is hereby granted d.	Saudons through Science & Engrey documents were reviews The results of this su have been met.	ed by U.S. EPA, Region V cryey indicate that the verificate storation work at this excavation.
Itached Verification Surv 1/12/03 as contained in the UAO rization is hereby granted decrease (c. Years)	Solutions through Science & Engrey documents were reviews The results of this su have been met. to commence backfill and res	nts, Ltd. pheering ed by U.S. EPA, R rvey indicate that the storation work at this Date

847 279 2535 P.03/04 TO:847 279 2535

P.3/4

Area Identification:	
Date of Verification Survey:	
Time of Verification Survey 9:30	(am)pm
The above-described excavation was surveyed at the time and of survey indicated that all soils have been removed as required by Criteria.	date indicated above. The the Site Removal Action
Documents pertaining to this survey are attached for review and ap	proval by the U.S. EPA.
Signed:	,
The Kant	Date 11/11/03
Stave Kornder	(Print Name)
Project Morecon	(Print Title)
STS Consultanta, Ltd. Solutions through Science & Engineering	
The attached Verification Survey documents were reviewed by 11 1/2 03	
criteria as contained in the UAO, have been met.	
Authorization is hereby granted to commence backfill and restoration	on work at this excevation
Signed:	
Fredrick a. Micke	Date
FREDRICK -A MICKE	(Print Name)
ON-SCENE COORDINATOR	(Print Title)
For U.S. EPA Region V	

3123539176 STC CUNSULTANIE 847 279 2535 TO:847 279 2535

P.04/04 P.4/4

FORM 223-1 NOTIFICATION OF SUCC _3SFUL VERIFICATION SURVEY

Area Identification:		09
Date of Verification Survey:	11/11/03	
Time of Verification Survey	-	and/pm
The above-described excavation survey indicated that all soils is Criteria.	on was surveyed at the tir have been removed as rea	ne and date indicated above. The quired by the Site Removal Action
Documents pertaining to this su	arvey are attached for revie	w and approval by the U.S. EPA.
Signed How Kon	<u>/</u>	Date /////03
Steve Kun	nder	(Print Name)
Preject Man	160-	(Print Title)
EC		sultante, Ltd.
·	Solutions through Science 8	Engineering
	vey documents were revi	cwed by U.S. EPA, Region V o
criteria as contained in the UAC	vey documents were revi The results of this D, have been met.	cwed by U.S. EPA, Region V o
criteria as contained in the UAC	vey documents were revi The results of this D, have been met.	ewed by U.S. EPA, Region V or survey indicate that the verification
oriteria as contained in the UAC Authorization is hereby granted Signed: Tredrick (1 Y	vey documents were revi The results of this D, have been met.	ewed by U.S. EPA, Region V or survey indicate that the verification restoration work at this excavation
oriteria as contained in the UAC Authorization is hereby granted Signed: Tredrick (1 Y	vey documents were revi The results of this D, have been met. I to commence backfill and	cwed by U.S. EPA, Region V of survey indicate that the verification restoration work at this excavation Date 11/12/03 (Print Name)
oriteria as contained in the UAC Authorization is hereby granted Signed: Treduck (L Y) FREDRICK A	vey documents were review. The results of this D, have been met. I to commence backfill and make	cwed by U.S. EPA, Region V of survey indicate that the verification restoration work at this excavation Date 1/12/03 (Print Name)
oriteria as contained in the UAC Authorization is hereby granted Signed: FREDRICK A ON-SCENE	vey documents were review. The results of this D, have been met. I to commence backfill and make	cwed by U.S. EPA, Region V of survey indicate that the verification restoration work at this excavation Date 1/12/03 (Print Name)

Verice on Survice Presenting 225.

Exclusion Zone Confirmatory Samples for November 11, 2003

Sample	Sample	Sample	Description	Weight	U-238	U-238	Th-232	Th-232	Ra-226	Ra-226	Total Radium	Total Radium
ID	Date	Group			Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty
909	11/11/03	ÉPA	S2659 C.2-3 Calsson EPA#1	38.4	1.98	2.39	0.96	0.74	1.53	0.97	2.49	1.220040983
910	11/11/03	EPA	S2660 C.2-3 Calsson EPA#2	37.4	3.99	2.82	1.44	0.85	0.46	1.1	1.9	1.390143877
911	11/11/03	EPA	S2661 C.2-3 Caisson EPA#3	36.7	2.76	2.73	0.13	0.85	1.31	1.16	1.44	1.43808901
912	11/11/03	EPA	S2662 C.2-3 Caisson EPA#4	40.5	-0.3	1.7	2.54	0.53	0.2	0.7	2.74	0.878009112
913	11/11/03	EPA	S2663 C.2-3 Caisson EPA#5	37.6	0.87	3.29	-0.22	1.04	2.1	1.45	1.88	1.784404663

Average Total Radium (Th-232+Ra-226) Concentration for :

C.2-3 Caisson

2.09

pCi/g

Sample	Sample	Sample	Description	Weight	U-238	U-238	Th-232	Th-232	Ra-226	Ra-226	Total Radium	Total Radium
۵i	Date	Group		1	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty
914	11/11/03	EPA	S2664 13D East EPA#1	31.6	-3.43	2.14	2.24	0.68	2.31	0.92	4.55	1.144027972
915	11/11/03	EPA	S2665 13D East EPA#2	31.3	-2.37	2.59	3.06	0.82	-0.14	1.06	2.92	1.340149245
916	11/11/03	EPA	S2666 13D East EPA#3	27.8	0.3	2.92	1.08	0.92	2.3	1.24	3.38	1.544020725
917	11/11/03	EPA	S2667 13D East EPA#4	33.6	-2.28	2.54	1.59	0.8	2.15	1.07	3.74	1.336001497
918	11/11/03	EPA	S2668 13D East EPA#5	33.2	-3.57	1.78	2.98	0.57	0.51	0.74	3.49	0.934077085

Average Total Radium (Th-232+Ra-226) Concentration for :

13D East

3.62

pCi/g

Sample	Sample	Sample	Description	Weight	U-238	U-238	Th-232	Th-232	Ra-226	Ra-226	Total Radium	Total Radium
D	Date	Group			Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty
919	11/11/03		S2669 13D West EPA#1	27.6	-5.38	3.61	1.54	1.17	0.82	1.57	2.36	1.958009193
920	11/11/03		S2670 13D West EPA#2	26.5	0.75	2.11	0.98	0.65	2.59	0.89	3.57	1.102088926
921	11/11/03		S2671 13D West EPA#3	29.6	0.38	3.86	2.06	1.18	-0.74	1.52	1.32	1.924266094
922	11/11/03	EPA	S2672 13D West EPA#4	27.7	1.81	2.07	1.34	0.64	1.25	0.84	2.59	1.058030303
923	11/11/03	EPA	S2673 13D West EPA#5	28.4	1.71	2.45	1.32	0.77	1.03	1.01	2.35	1.270039369
1							***************************************		Territoria i un o deport para esta esta esta esta esta esta esta est		***************************************	

Average Total Radium (Th-232+Ra-226) Concentration for :

13D West

2.44

pCi/g

()

THE

NFRASTRUCTURE

MPERATIVE

APPENDIX B

Correspondence with USEPA

STS Consultants, Ltd. 750 Corporate Woods Parkway Vernon Hills, Illinois 60061-3153 voice 847-279-250O fax 847-279-251 O web www.stscons.ultants.com

September 16, 2003

Mr. Fred Micke, On-Scene Coordinator U.S. Environmental Protection Agency, Region 5 77 West Jackson Blvd., SE-5J Chicago, Illinois 60604

RE:

Survey of Wick Drain Spoil Soils for Radiological-Impact, Lakeshore East Site, 221 North Columbus Drive, Chicago, Illinois - STS Project No. 1-32193-XC

Dear Mr. Micke:

This letter is to advise the USEPA of the ongoing radiological surveying activities at the Lakeshore East site and indicate our understanding, per our phone conversation of August 5, 2003. The installation of wick drains in the southern slip utilized a 30-foot boring and resulted in the generation of a small amount of surface spoil material that is estimated to be less than 1 cubic foot per wick drain. During the installation of wick drains in the southern slip on July 28, 2003 field survey personnel (S. A. Huber) observed a gamma reading of 27,000 counts per minute (cpm) at one of the wick drains. This observed reading was slightly above cutoff the value of 20,352 cpm. The spoil material was observed to contain ash and brick fragments. As discussed with the USEPA, it is unclear whether the slightly elevated readings were attributable to the presence of the brick material.

The attached section of the wick drain installation plan indicates the position of the drain as 174 ft. west of the property line along Harbor Drive and 109 ft. north of the property line for 400 East Randolph. The wick drain area containing the soil/spoil material with the elevated gamma readings was placed in a plastic bag. The ground surface area was then surveyed and determined to be consistent with background gamma levels. The bagged material was stored in a secure area onsite and will be disposed with other radiologically-impacted material from the site. Spoil material generated at the surrounding series of drains installed about 5 feet away exhibited no evidence of elevated gamma readings. Thus, the impacted material with elevated readings appeared to be isolated. Additionally, no elevated gamma readings were observed in the spoil of the other wick drains (>1400) installed within the southern slip.

The wick drain is located within the proposed park drive right-of-way. The current elevation of the surface at the drain is approximately 7 ft. CCD. However, the final elevation for the roadway is proposed to be 23.9 ft. CCD. Thus, the existing surface will be covered with about 17 feet of fill soil, which will essentially preclude the potential for future exposure. A call was placed to Mr. Fred Micke (USEPA) to discuss the investigation of the wick-drain on August 5, 2003. In the call the USEPA and STS agreed that additional investigation/removal activities were not warranted given the absence of elevated readings at the surface, the planned placement of additional fill soils, the short distance to the watertable, the isolated nature of the impacted material (based on the survey of surrounding spoil piles) and difficulties in conducting excavation activities within the newly stalled wick drain field. However, at USEPA's request, a notice will be included within the deed on which the potentially impacted soil will remain.

Please feel free to contact us if you have any questions or need additional information.

Regards,

STS CONSULTANTS, LTD.

-Steven C. Kornder, Ph.D. Senior Project Geochemist

Douglas J. Hermann, P.E.

Principal Engineer

Kara Hughes, Lakeshore East Development, LLC

Attachment

CC:

ATTACHMENT A

Portion of Wick Drain Plan Drawing

THE

NFRASTRUCTURE

MPERATIVE

C

APPENDIX C

Radiological Soil Sample Analyses

- a. NUTRANL
 - i. Chronological List
 - ii. Imported Fill Soil Analyses
- b. RSSI Gamma Spectroscopy

a. NUTRANL Analyses

i. CHRONOLOGICAL LIST

	Nutran	i Gamma	Spec Report	- Lake	snore E	ast Site			221 North	Columbus	Drive, Chicago,	<u>IL</u>
	Daily Re	port for 3/26	6/03 & 3/27/03									
Sample	Sample	Sample	Description	Weight	U-238	U-238	Th-232	Th-232	Ra-226	Ra-226	Total Radium	Total Radium
ID	Date	Group	<u> </u>	· · ·	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty
684	3/26/2003	background	bkg032603	7.5	3.14	1.77	-0.37	0.47	-0.09	0.69	-0.46	0.834865259
		soil standard	soilstd032603	36.9	1.81	2.35	5.76	0.62	1.94	0.83		1.03600193
686	3/26/2003	exclusion zone	S2479 9D North	20.4	-56.47	15.14	122.53	3.96	32.54	4.9	155.07	6.30012698
687	3/26/2003	exclusion zone	S2480 9D South	25.5	-60.55	15.48	104.48	4.09	72.49	5.38	176 97	6,75814323
		background	••••••	7.5	3.84	2.23	0.34		• • • • • • • • • • • • • • • • • • •	0.87		1.05683489
• • • • • • • • • • • • • • • •	. 		bkg032703					*******************		.		
	(* * · · · * * · · · · · · · · · · · · ·	soil standard	soilstd032703	36.9	12.78	3.08	5.35	(· · · · · · · · · · · · · · · · · · ·	0.9	1.03	· · · · · · · · · · · · · · · · · · ·	1.29201393
690	3/27/2003	Pre EPA	S2481 36A S2482 9A#1	41.5	-4.94	1.99	2.23	0.56	-0.11	0.79	2.12	0.96834911
691	3/27/2003	EDΔ	EPA#1	26.7	3.6	2.22	1.25	0.59	1.55	0.83	2.8	1.01833196
031	3/2/1/2003	: <u></u>	S2483 9A#1	20,7	3.0	2.22	1.20	0.33	1,55	0.03	2.0	1.01033130
692	3/27/2003	FPA	EPA#2	23.4	-0.3	2.76	1.89	0.74	1.49	1.06	3.38	1.29274900
		:	S2484 9A#1				,,,,,					
693	3/27/2003	EPA	EPA#3	24.6	6.3	2.32	1	0.61	2.62	0.88	3.62	1.07074740
			S2485 9A#1									(
694	3/27/2003	EPA	EPA#4	25.3	3.35	2.55	1.61	0.68	0.6	0.96	2.21	1.17643529
•••••••••••••		:	S2486 9A#1		:				;•••••••••••••••••••••••••••••••••••••	: :		
695	3/27/2003	EPA	EPA#5	24.6	-0.59	2.46	1.74	0.67	1.09	0.94	2.83	1.15433963
······································	:	:	S2487 9A#2		:		: · · · · · · · · · · · · · · · · · · ·		(* · · · · · · · · · · · · · · · · · · ·			(
696	3/27/2003	EPA	EPA#1	23.7	3.01	2.26	0.78	0.6	0.79	0.86	1.57	1.04861813
		:	S2488 9A#2	:								:
697	3/27/2003	EPA	EPA#2	25.6	5.58	1.65	0.38	0.43	1.39	0.62	1.77	0.75451971
			S2489 9A#2	:	:	***************************************	· · · · · · · · · · · · · · · · · · ·	:				
698	3/27/2003	EPA	EPA#3	24.7	0.31	1.62	1.43	0.44	0.68	0.62	2.11	0.76026311
• • • • • • • • • • • • • • • • • • • •	:		S2490 9A#2				:·····································		,			
699	3/27/2003	EPA	EPA#4	22.5	0.63	2.26	1.14	0.62	1.63	0.88	2.77	1.07647573
	:		S2491 9A#2		:		i ! !				-	
700	3/27/2003	EPA	EPA#5	24.6	0	2	0.62	0.54	2.07	0.78	2.69	0.94868329
	3/27/2003		S2492 9B EPA#1	26.5	4.25	2.18			<	0.8	· • · · · · · · · · · · · · · · · · · ·	0.98812954
	3/27/2003	.,	S2493 9B EPA#2	27.4	6.08	2.6						1.21757956
	3/27/2003		S2494 9B EPA#3	26.8	1.18	1.91		· • • • • • · • • • • • • • • • • • • •	4	/		0.89050547
	3/27/2003		S2495 9B EPA#4	27.5	1.46	2.48	· · · · · · · · · · · · · · · · · · ·	<i><</i>			3	1.13811247
	3/27/2003	• • • • • • • • • • • • • • • • • • • •	S2496 9B EPA#5	26.7		2.61						1.20432553
*************	3/27/2003	:	S2497 36A EPA#1	31.6		2.84					0.41	1.26605687
••••••										: :	;	:
707	3/27/2003	B EPA	S2498 36A EPA#2	33.5	2.22	1.83	1.21	0.48	0.05	0.68	1.26	0.83234608
708	3/27/2003	R·FPΔ	S2499 36A EPA#3	30.9	2.24	2.67	0.25	0.7	: . 1.55	1.04	1.8	1.25363471

	Nutran	l Gamma	Spec Report-	Lakes	hore Ea	st Site			221 Nortl	Columbus	Drive, Chicago,	IL
			L 5 - 4 0'4 - 6		<u></u>	A . :1 44 O	! 					
			shore East Site S				,		2 222			
Sample	Sample	Sample	Description	Weight	U-238	U-238	Th-232	Th-232	Ra-226	Ra-226	Total Radium	Total Radium
ID	Date	Group		<u> </u>	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty
691	3/27/2003	******* *	S2482 9A#1 EPA#1	26.7	3.6	2.22	the second second		and the second	0.83		1.018331969
692	3/27/2003		S2483 9A#1 EPA#2	23.4	-0.3	2.76		\$	area area a area area		5	1.292749009
693	3/27/2003 [S2484 9A#1 EPA#3	24.6	6.3	2.32				grand and the second of the second		1.070747403
694	3/27/2003		S2485 9A#1 EPA#4	25.3	3.35			0.68	and the second			1 176435294
695	3/27/2003 [S2486 9A#1 EPA#5	24.6	-0.59	2.46				0.94		1.154339638
696	3/27/2003 [S2487 9A#2 EPA#1	23.7	3.01	=-==	garana salahan	1	,		to the contract was a second	1.048618138
697	3/27/2003		S2488 9A#2 EPA#2	25.6	5.58	1.65		*** ** **** *	second training			0.754519715
698	3/27/2003:1		S2489 9A#2 EPA#3	24.7	0.31		\$		gran arrest and a con-	e de la partir de la companya de la	I compression and a service of the compression of t	0.760263112
699	3/27/2003		S2490 9A#2 EPA#4	22.5	0.63	2.26			1.4.4	ga a sa sassa as la sala s		1.076475731
700	3/27/2003		S2491 9A#2 EPA#5	24.6	0		C	\$	Attended to constitution	,	transcript of the second control of the control of	0.948683298
701	3/27/2003		S2492 9B EPA#1	26.5	4.25	2.18					· · · · · · · · · · · · · · · · · · ·	0.988129546
702	3/27/2003	AND ADDRESS OF A STREET, AND ADDRESS OF A STRE	S2493 9B EPA#2	27.4	6.08		of a conservation of the				\$	1.217579566
703	3/27/2003		S2494 9B EPA#3	26.8	1.18	1.91			december en		grand area a a construction and the	0.890505474
704	3/27/2003 [erenge nyagarerenga eren ere	S2495 9B EPA#4	27.5	1.46	2.48						1.138112472
705	3/27/2003		S2496 9B EPA#5	26.7	1.27	2.61				0.98	!	1.204325537
706	3/27/2003		S2497 36A EPA#1	31.6	1.24	2.84		}	2000	1.02	Çerantanın etti alanının etti alanının etti alanın etti alanının etti alanın etti alanın etti alanın etti alanın	1.266056871
707	3/27/2003		S2498 36A EPA#2	33.5	2.22				4 4 4 44		to a contract a contract of the	0.832346082
708	3/27/2003:1		S2499 36A EPA#3	30 9	2.24				2.5			1.253634716
709 _:	3/27/2003:1		S2500 36A EPA#4	31.8	6 38	2.59	0.62	0.68	0.02	0.95	0.64	1.168289348
710	3/27/2003 1	EPA	S2501 36A EPA#5	315	2.68	2.12	0.36	0 56	0.64	0.81	1	0.984733466
711	3/27/2003	exclusion zone	S2502 11C #1	37.6	2.06	2.69	1.52	0.71	1.28	1.01	2.8	1.23458495
712	3/27/2003:	exclusion zone	S2503 11C #2	27.4	7.41	3.36	4.5	0.89	. 5.37	1.21	9.87	1.502065245
713	3/27/2003	ift spot	S2504 11B	22.7	-0.37	3.53	1.14	0.96	3.46	1.4	4.6	1.697527614
714	3/28/2003	background	bkg032803	7.5	0.9	2.06	-1.17	0.57	1.36	0.87	0.19	1.040096149
715	3/28/2003	soil standard	soilstd032803	36.9	6.93	2.82	4.53	0.74	2.99	1	7,52	1.244025723
716	3/31/2003	background	bkg033103	7.5	2 15		0.9	0.63	-1.46	0.88	-0.56	1.082266141
717		soil standard	soilstd033103	36.9	0.92		4.67	0.88	3.02	1.19	7.69	1.480033783
718		background	bkg040103	7.5	5.62	2 43	1	*** ** * *			•	1.148259553
719		soil standard	soilstd040103	36.9	1.14	and the second of the second	Section 20 and a section of	1 1 1 11		A SECTION OF THE SECT	Conservation of the contract o	green and the second of the
720		background	bkg040203	7.5		1.87	1.1	•	7			0.898721314
721		soil standard	soilstd040203	36.9	2.23		grade and a	2			Or service and the service	per contract to the contract of the contract o
722	4/2/2003	the first the second of a green con-	S2505 11C#1	28.5	2.37						deal of the second	1.636826197
723	4/2/2003		S2506 11C#2	31.6	0.8		1.1		No. of the contract of the con	g		1.292749009
724	4/2/2003		S2507 11D	31.2								1.447791421
725		background	bkg040303	7.5	2.65					2	\$	0.793221281

-	Nutran	1 Gamma	Spec Report-	Lakes	hore Ea	st Site	,		221 Nort	h Columbus	Drive, Chicago,	1L
	Sumn	nany of Lak	eshore East Site S	amnias	Through	Δpril 11 - 20	003	<u></u>				
Sample	Sample	Sample	Description	Weight	U-238	U-238	Th-232	Th-232	Ra-226	Ra-226	Total Radium	Total Radium
ID	Date	Group	Boson priori	""	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty
726	4/3/2003	soil standard	soilstd040303	36.9	-1.82	2.19	4.62				<u> </u>	1.016070864
727	4/3/2003		S2508 10C	28.5	1.55	3.18	5 · · · · · · ·	Çerren e le rer e com e			Ģ ******* ***** *****	1.42635900
728	4/3/2003	************	S2509 10D#1	32.4	1,77	3.28		*************				1.46823022
729	4/3/2003	Pre EPA	S2510 10D#2 (1)	27.3.	6.08	3.8	Service of the service of	de e e e				1.698381583
730	4/3/2003	Pre EPA	S2511 10D#2 (2)	31.3	0.88	2.95	2.87					1.30801376
731	4/3/2003	Pre EPA	S2512 10D#2 (3)	35.5	8.11	4.26					1.85	1.832157198
732	4/3/2003	Pre EPA	S2513 10D#2 (4)	36.3	2.97	2. 8 9		0 75		. 		1.331352696
733	4/3/2003		S2514 10D#3	31.1	-0.53	4.22	2.38	1.15	2.48	1.62	·	1.986680649
734	4/3/2003	Pre EPA	S2515 9C (1)	28.5	-0.65	4.09						1.986680649
735	4/3/2003	Pre EPA	S2516 9C (2)	34.7	3.08	3.83	1.9	0.99	-0.74			1.7146719
736	4/4/2003	background	bkg040403	7.5	1.66	1.94	0.49	0 53	-1.13			0.92655275
737		soil standard	soilstd040403	36.9	4.46	2.82	4.83	0.75	2.71	1	7.54	
738	4/4/2003	EPA	S2517 11C#1 EPA#1	36.4	1.15	2.18	0.33	0.58	1.27	0.84	1.6	1.02078401
739	4/4/2003	EPA	S2518 11C#1 EPA#2	35.7	2.08	2.49	0.27	0.68	1.47	0.98	1.74	1.19281180
740	4/4/2003	EPA	S2519 11C#1 EPA#3	33.5	-1.69	1.64	0.9	0.45	0.36	0.64	1.26	0.782368
741	4/4/2003	EPA	S2520 11C#1 EPA#4	36.5	8.6	3.15	1.46	8.0	-0.42	1.08	1.04	1.34402380
742	4/4/2003	EPA	S2521 11C#1 EPA#5	36.8	8.03	2 54	-0.4	0.64	3.25	0.97	2.85	1.1621101
743	4/4/2003	EPA	S2522 11C#2 EPA#1	31.8	5.93	2.59	1.5	0.67	2 74	0.97	4 24	1.1788977
744	4/4/2003	EPA	S2523 11C#2 EPA#2	32.3	10.52	3 22	0.68	0.81	2.34	<u>1</u> 17	3.02	1.42302494
745	4/4/2003	EPA	S2524 11C#2 EPA#3	32.5	1.86	2.77	1.63	0.74	1.41	1.03	3.04	1 26826653
746	4/4/2003	EPA	S2525 11C#2 EPA#4	29.4	5.47	2.27	1.9	0.59	1.99	0.83	3.89	1.01833196
747	4/4/2003	EPA	S2526 11C#2 EPA#5	32.9	-0.65	2.37	0.97	0.63	3.59	0.92	4.56	1.11503363
748	4/4/2003	EPA	S2527 11D EPA#1	35.4	6.96	3.13	3 0.6	0.79	2.52	1.16	3.12	1.4034600
749	4/4/2003	EPA	S2528 11D EPA#2	34.6	0.11	2.98	2.36	0.82	0.65	1.13	3.01	1.39617334
750	4/4/2003		S2529 11D EPA#3	36.7	3-	2.91	-0.28	0.78	2.95	1.17	2.67	1.40616499
751	4/4/2003	· · · · · · · · · · · · · · · · · · ·	S2530 11D EPA#4	32.9	2.81	2.22	0.79	0.59	2.46	0.86	3.25	1.04292856
752		******* *****	S2531 11D EPA#5	35.3	5.03	2.89	0.4	0.75	2.18	1.11	2.58	1.33962681

	Nutran	Gamma	Spec Report-	Lakes	hore Ea	st Site			221 Norti	n Columbus	Drive, Chicago,	IL
	Summ	nary of Lak	eshore East Site S	amnles	Through	Anril 11 20	ากร					
Sample	Sample	Sample	Description	Weight	U-238	U-238	Th-232	Th-232	Ra-226	Ra-226	Total Radium	Total Radium
ID	Date	Group	Description	1101911	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty
753	4/4/2003		S2532 10C EPA#1	32.2	6,17	2.92				1.03		1.26826653
754	4/4/2003 [S2533 10C EPA#2	34.5	1.71:	3.36			2.54	1.27		1.55080624
755	4/4/2003		S2534 10C EPA#3	32.6	-3.34	2		 	1.54	0.78		0.96020831
756	4/4/2003 [S2535 10C EPA#4	31 1.	6	3.97				1.45	Q	1.77282260
757	4/4/2003		S2536 10C EPA#5	30 3	-0.27	3.33				1.29		
758	4/4/2003	EPA	S2537 10D#1 EPA#1	31 6	-1.08	2.16	2.44	0.6	0 36	0.82	2.8	1.01607086
759	4/4/2003 I	EPA	S2538 10D#1 EPA#2	29.8	6.57	2.69	1.92	0.7	2	0.98	3.92	1.20432553
760	4/4/2003	EPA	S2539 10D#1 EPA#3	34.5	1.99	3.3	1.56	0.9	2.96	1.26	4.52	1.54841854
761	4/4/2003	EPA	S2540 10D#1 EPA#4	33.6	-1.67	3.02	1.24	0.84	3.83	1.21	5.07	1.47299015
762	4/4/2003	EPA	S2541 10D#1 EPA#5	34.3	-2.79	2.85	1.38	0.79	1.75	1,15	3,13	: : 1.39520607
763	4/4/2003 I	EPA	S2542 9C EPA#1	28.6	2.55	2.98	0.8	0.79	1.44	1.14	2.24	1.38697512
764	4/4/2003	EPA	S2543 9C EPA#2	27.7	2.13	2.5	0.01	0.67	2.83	1.02	2.84	1.22036879
765	4/4/2003	EPA	S2544 9C EPA#3	31.2	5.35	3.98	1.4	1.01	1.07	1.45	2.47	1.76708
766	4/4/2003	EPA	S2545 9C EPA#4	29.8	4.59·	2.86	0.16	0.78	4 1	1.13	4.26	1.37306227
767	4/4/2003 [EPA	S2546 9C EPA#5	32.6	0.09	3.5	1.81	0.93	1.58	1.31	3.39	1.60654909
768	4/4/2003	EPA	S2547 10D#3 EPA#1	34.6	1.85	2.04	1.65	0.55	1.47	0.77	3.12	0.94625577
769	4/4/2003	EPA	S2548 10D#3 EPA#2	34.8	5.31	2.57	1.91	0 68	0.3	0.94	2.21	1.16017240
770	4/4/2003	EPA	S2549 10D#3 EPA#3	34.2	4 35	1.83	0.9	0.48	2.12	0.69	3.02	0.84053554
771	4/4/2003	EPA	S2550 10D#3 EPA#4	33.4	-0.07	2.59	1.78	0.69	1.69	0.97	3.47	1.19037809
772:	4/4/2003	EPA	:S2551 10D#3 EPA#5	35.7	4.8	3.24	1.45	0.86	0.62	1.2	2.07	1.47634684
773		background	bkg041003	7.5	1.1	2.8		ARE BOOK AND LOST A DESCRIPTION				1.36180027
774		soil standard	soilstd041003	36.9	0 53	2.74	4			0.99	de total contract of the contract of	1.23600161
775	4/10/2003	Pre EPA	S2552 9D/9C Pre EPA #1	32.5	5.59	3 13	1.63	0.79	-0.78	1.08	0.85	1.33809566
776	:	***************************************	S2553 9D/9C Pre EPA #2	29 4			:					1.77792013

,	Nutran	l Gamma	Spec Report	· Lakes	hore Ea	st Site			221 North	Columbus	Drive, Chicago,	IL
	Sumr	nary of Lak	eshore East Site	Samples	Through	April 11, 20	003					
Sample	Sample	Sample	Description	Weight	U-238	U-238	Th-232	Th-232	Ra-226	Ra-226	Total Radium	Total Radium
ID	Date	Group			Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty
			S2554 9D/9C Pre				:					
777	4/10/2003	Pre FPA	EPA #3	26.4	5.77:	3.27	3.02	0.85	0.93	1.15	3 95	1.43003496
	47 1072000	110 1	S2555 9D/9C Pre							1.10	0.30	1.43000430
778	4/10/2003	Pre EPA	EPA #4	33.6	1.52	3.07	1.83	0.83	2.51	1.18	4 34	1,44267113
			S2556 9D/9C Pre		::::: :::::::::::::::::						ii	
779	4/10/2003	Pre EPA	EPA #5	33.2	3.21	3.05	1.21	0.8	1.25	1.12	2.46	1.37637204
			S2557 9D/9C Pre									
780:	4/10/2003:	Pre EPA	EPA #6	40.3	-1.12	3.48	1.46	0.95	0.2	1.35	1 66	1.65075740
' 55			S2558 9D/9C Pre		چ آدادادادادادادادادادادادادادادادادادادا		[,		, 			
781	4/10/2003	Pre EPA	EPA #7	39.7	2.15:	3.76	2.4	1.01	0.99	1.39	3.39	1.71819672
782		background	bkg041103	7.5	-1.94	1.94	0.49	0.55	0.05	0.8	0.54	0.97082439
783	***	soil standard	soilstd041103	36 9	0.16.	2.39	3.86			0.9		1.11018016
			S2559 9D/9C NE			,,						
784	4/11/2003	EPA	EPA#1	26.7	1.64.	3.4	1.53	0.9	0.08	1.26	1.61	1.54841854
			S2560 9D/9C NE				:	:				
785	4/11/2003	EPA	EPA#2	27.8	5.16:	3.55	0.57	0.91	1.64	1.32	2.21	1.60327789
			S2561 9D/9C NE				:	:			:	
786	4/11/2003	EPA	EPA#3	27.4	3.87	2.52	0.97	0.66	0 44	0.94	1.41	1.14856432
:			S2562 9D/9C NE		:						:	
787	4/11/2003	EPA	EPA#4	27 2	0.63	2.32	1	0 63	1 43	0.9	2.43	1.09859000
			S2563 9D/9C NE	· · · · · · · · · · · · · · · · · · ·				i				
788	4/11/2003	EPA	EPA#5	28.1	-0.14	2.45	1.79	0.66	0.66	0.93	2.45	1.14039466
	:		S2564 9D/9C SE								:	
789	4/11/2003	EPA	EPA#1	29.6	-2.49	2.59	2.51	0.71	1.17	0.98	3.68	1.21016527
		· · · · · · · · · · · · · · · · · · ·	S2565 9D/9C SE				:			1	:	
790	4/11/2003	EPA	EPA#2	32.2	7.02	2.97	1.68	0.78	1.92	1.1	3.6	1.34848062
:			S2566 9D/9C SE						,			
791	4/11/2003	EPA	EPA#3	32.6	3.02	2.17	0.85	0.57	3.75	0.84	4.6	1.01513545
	***************************************		S2567 9D/9C SE									
792	4/11/2003	EPA	EPA#4	30.7	-0.4	3.59	0.69	0.96	3.1	1.42	3.79	1.71405950
		:	S2568 9D/9C SE	:	:							
793	4/11/2003	EPA	EPA#5	30.3	6.38	2.53	2.59	0.65	0.69	0.9	3.28	1 11018016
			S2569 9D/9C NW								1	
794	4/11/2003	EPA	EPA#1	28.6	-2.08	2.37	1.67	0.64	1.28	0.91	2.95	1.11251966
			S2570 9D/9C NW	:				:				
795	4/11/2003	EPA	EPA#2	26.7	5.28	2.68	0.39	0.7	2.03	1.02	2.42	1.23709336

	Nutran	l Gamma	a Spec Report-	Lakes	hore Ea	st Site			221 North	Columbus	Drive, Chicago,	IL
	Sumn	nary of Lak	keshore East Site S	amples	Through	April 11, 20	003					
Sample ID	Sample Date	Sample Group	Description	Weight	U-238 Activity	U-238 Uncertainty	Th-232 Activity	Th-232 Uncertainty	Ra-226 Activity	Ra-226 Uncertainty	Total Radium Activity	Total Radium Uncertainty
796	4/11/2003	EPA	S2571 9D/9C NW EPA#3	26.4	-0.75	1.93	2.45	0.52	-0.91	0.72	1.54	0.888144132
797	4/11/2003	EPA	S2572 9D/9C NW EPA#4	26.6	5.88	2.55	0.62	0.67	2.84	0.97	3.46	1.17889779
798	4/11/2003	EPA	S2573 9D/9C NW EPA#5	25.7	-1.94	2.98	1.34	0.81	1.47	1,17	2.81	1.42302494
799	4/11/2003	EPA	S2574 9D/9C SW EPA#1	21.6	0.93	3.74	1.26	1.04	0.65	1.44	1.91	1.77628826
800	4/11/2003	EPA	S2575 9D/9C SW EPA#2	24.4	4.55	3.34	0.04	0.89	3.31	1.31	3,35	1.58372977
801	4/11/2003	EPA	S2576 9D/9C SW EPA#3	22.3	2.01	2.79	0.33	0.74	2.32	1.1	2.65	1.325745074
802	4/11/2003	EPA	S2577 9D/9C SW EPA#4	25.3	0.5	2.57	2.11	0.71	1.97	0.99	4.08	1.218277472
803	4/11/2003	EPA	S2578 9D/9C SW EPA#5	24.5	7.41	3.18	1.22	0.82	-0.02	1.14	1.2	1.404279175
804	4/11/2003	EPA	S2579 10D#2 EPA#1	28.8	0.83	2.64	0.49	0 71	1.39	1.04	1.88	1.259245806
805	4/11/2003	EPA	S2580 10D#2 EPA#2	28 7	0 69	2.87	1 65	0 79	1.6	1,11	3.25	1.3624243
806	4/11/2003	EPA	S2581 10D#2 EPA#3	28.7	2.95	3.16	0.95	0.84	1.28	1,2	2 23	1.46478667
807	4/11/2003	EPA	S2582 10D#2 EPA#4	30.6	8.08	3.72	1	0.93	-0.87	1.29	0.13	1.59028299
808	4/11/2003	EPA	S2583 10D#2 EPA#5	30 6	0.85	2.36	1.72	0.65	0.25	0.89	1.97	1.102088926

	Nutra	ol Gamma	Spec Report	- Lake	shore E	ast Site	·		221 North	Columbus	Drive, Chicago,	iL
	Dally R	eport for 6/3	0/03 - 7/2/03 Misc	. Samp	les							
ample	Semple	Sample	Description	Weight	U-234	U-269	Th-232	Th-222	Ra-228	Rs-226	Total Radium	Total Rediv
ID	Deta	Group			Activity	Uncertainty	Activity	Uncertability	Activity	Uncertainty	Activity	Lincorteini
810	6/30/03	background	bkg063003	20	0.82	3.07	0.25	0.71	-1.26	1	-1.01	1.228417
811		soil standard	eoiletd063003	36.9	7.14;	6.69	3.44	1.52	2.18	1.99	6.82	2.504098
812	6/30/03	soll standard	solletd063003(2)	38.9	4.93	2.24	3.73	0.6	3.11	0.63	6.84	1.024158
813	8/30/03	background	bkg063003	7.5	-0.08	1,42	-0.04	0.4	-0.37	0.59	-0.41	0.712811
814	7/1/03	beckground	bkg070103	7.5	0.77	1.2	-0.05	0.33	-0.03	0.5	-0.08	0.599082
815	7/1/03	soll standard	eoiletd070103	36.9	5.79	3.26	4.96	0.85	2.18	1.15	7.12	1.430034
818	7/2/03	background	(bkg070203	7.5	0.1	1.7	-D.89	0.47	0.61	0.73	-0.28	0.868218
817	7/2/03	brebnete floe	soiletd070203	38.9	4.91	3.58	5.43	0.95	1.65	1.28	7.08	1.594020
818	7/2/03	EPA	92584 C-218 (73) EPA #1	32.5	4.92	2,54	0.62	0.67	0.49	0.98	1.11	1.187139
819	7/2/03	EPA	S2585 C-218 (73) EPA #2	32.7	0.62	3,05	0.67	0.83	0,32	1.21	0.98	1,467310
820	7/2/03	EPA	S2588 C-218 (73) EPA #3	31.9	6.44	2,66	-1.64	0.68	3.73	1.1	2.09	1.29321
821	7/2/03	EPA	82587 C-218 (73) EPA #4	33.6	0.55	2,68	0.15	9.75	1.67	1.1	1.82	1,33135
822	7/2/03	EPA	\$2588 C-218 (73) EPA #5	32.4	5.08	4.35	0.04	1.14	1.19	1.71	1.23	2,05516
823	7/2/03	exclusion zone	82589 C-201 (31)	29.5	10.01	14.77	60.98	3.8	2.21	4.49	83.19	5.88218
824	7/2/03	Pre EPA	S2590 C-201 (31)	32.3	1.69	3.86	0.41	1.05	2.03	1.58	2.44	1.89707
825	7 <i>121</i> 03	enclusion zone	82691 C-201 (31)#2	25.8	8.84	7.01	26	1.84	9.01	2.35	35.01	2.98484
826	7/2/03	Pre EPA	82592 C-201 (31)#2	32,4	12.55	3.3	-0.43	0.79	2.34	1.21	1.91	1.44506

TOTAL P. 09

······í	Nutra	ul Gamma	Spec Report	- Lake	shore E	ast Bite		·	221 North	Columbus	Drive, Chicago,	IL
	Daily R	eport for 7/7	7/03 - 7/8/03	L								
npie	Sample	Sample	Description	Weight	U-238	U-298	Th-232	Th-282	Ra-226	Ra-228	Total Radium	Total Radius
ID .	Date	Group			Activity	Uncertainty	Autivity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty
527	7/7/03	background	bkg070703	7.5	3.26	1.53	-0.62	0.4	0.46	0.61	-0.16	0.7294518
828	7/7/03	soil standard	sollatd070703	36.9	3.1	2.49	4.87	0.68	1.65	0.91	B.72	1.1241441
829	7/8/03	beckground	,bkg070803	7.5	1.38,	1.68	-0.87	0.48	0.18	0.7	!	0.8376158
830	7/8/03	soil standard	soilstd070803	36.9	1.1	3.6	4.53	0.98	2.17	1.33	6.7	1.6520593
831	7/8/03	EPA	192593 C-201(31)#1 EPA #1	31.4	3.08	2.15	2.11	0.57	0.31	0.79	2.42	0.974166
832	7/8/03	EPA	S2594 C-201(31)#1 EPA #2	30.7	-3.6	2.3	2.69	0.65	1.65	0.9	4.34	1.1101801
633	7/8/03	EPA	92595 C-201(31)#1 EPA #3	29.5	3.66	2.72	1.59	0.74	1.12	1.04	2.71	1.2764011
834	7/8/03	EPA	S2596 C-201(31)#1 EPA #4	28.8	-0.44	2.79	1.48	0.78	1.24	1.1	2.72	1.3484806
835	7/8/03	EPA	S2597 C-201(31)#1 EPA #5	29.9	8.41	2.69	1.6	0.7	1.78	1	3.38	1.220655
836	7/8/03	EPA	S2598 C-201(31)#2 EPA #1	29.8	-1.81	2.48	1.35	0.68	1.7	1	3.05	1.209297
837	7/8/03	EPA	\$2599 C-201(31)#2 EPA #2	28.6	2.65	2.28	0.78	0.81	1.41	0.88	2.16	1.0707474
838	7/8/03	EPA	S2600 C-201(31)#2 EPA #3	28.5	6.19	2.1	0.68	0.54	0.99	0.78	1.65	0.948683
839	7/8/03	EPA	\$2601 C-201(31)#2 EPA #4	29.3	3.55	2,68	-0.29	0.71	3.39	1.09	3.1	1.300845
840	7/8/03	EPA	92802 C-201(31)#2 EPA #5	28.3	2.61	2.31	1.08	0.61	1.41	0.9	2.47	1.087244

	Nutra	nl Gamma	Spec Report	- Lake	shore E	ast Site			221 Norti	Columbus	Drive, Chicago,	IL
	Daily R	eport for 8/1	5/03 - 8/26/03	lL		·						
ample	Sample	Sample	Description	Welght	U-238	U-238	Th-232	Th-232	Ra-226	Ra-226	Total Radium	Total Radium
ID	Date	Group	<u> </u>	·	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty
841	8/15/03	background	;bkg081503	7.5	1.42	2.04	0.28	0.55	-1.2;	0.79	-0.92	0.96260064
842	8/15/03	soil standard	soilstd081503	36.9	-1.58	1.67	5.47	0.46	1.18	0.62	6.65	0.77201036
843	8/15/03	Fill Soil	S2603 import sand WD #1	35.5	3.31	2.22	-0.26	0.58	0.33	0.88	0.07	1.0539449
844	8/15/03	Fill Soll	S2604 import sand WD #2	35.3	1.61	1.59	-0.4	0.43	0.74	0.65	0.34	0.77935871
845	8/15/03	Fill Soil	S2605 Import sand WD #3	35.7	3.02	3	-0.23	0.8	-0.66	1.14	-0.89	1.39269522
846	8/15/03	Fill Soil	S2606 import sand WD #4	36.1	3.27	2.46	0.66	0.68	0.24	0.95	0.9	1.15676272
847	8/15/03	Fill Soil	S2607 import sand WD #5	36	3.06	1.97	0.62	0.52	0.68	0.77	1.3	0.92913936
848	8/15/03	Fill Soil	\$2608 import sand WD QC	35.3	-0.64	2.08	0.05	0.57	0.36	0.84	0.41	1.0151354
849	8/15/03	exclusion zone	S2609 12C#1	22.5	-5.48	11.88	74.17	3.12	14.45	3.89	88.62	4.9868321
850	8/15/03	exclusion zone	S2610 12C#2	31.4	-0.43	2.4	2.6	0.67	3.09	0.95	5.69	1.16249731
851		exclusion zone	S2611 12C#3	15.3	1.71	4.08	1.81	1.09	-0.33	1.53	1.48	1.87856326
852	8/26/03	background	bkg082603	7.5	2.62	1.84	0.29	0.5	-0.89	0.72	-0.8	0.8765842
853	8/26/03	soil standard	soilstd082603	36.9	6.18	3,58	4.98	0.94	1.73	1.24	6.71	1.55602056
854	8/26/03	Pre EPA	S2612 12C#1	27.3	8.18	2.73	1.37	0.7	2.55	1.02	3.92	1.23709336
855	8/26/03	Pre EPA	S2613 12C#2	24.6	6.57	3.16	0.94	0.82	1.37	1.18	2.31	1.43694118
856	8/26/03	Pre EPA	S2614 12C#3	23.9	2.56	2.63	1.84	0.71	3.34	1.02	5.18	1.24277914

	Nutrai	al Gamma	a Spec Repor	t- Lake	shore E	ast Site			221 North	Columbus	Drive, Chicago,	IL
	Daily B	eport for 8/2	27/02	1 1	1							
Sample	Sample	Sample	Description	Weight	U-238	U-238	Th-232	Th-232	Ra-226	Re-226	Total Radium	Total Radium
ID	Date	Group		<u> </u>	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty
857	8/27/03	background	bkg082703	7.5	-1.95	1.88	0.26	0.54	-0.58	0.8	-0.32	0.965194281
858		soli standard	soilstd082703	36.9	8.42	3.04	4.38	0.79	1.85	1.07	6.23	1.330037593
			S2615 12C#1	-								
859	8/27/03	EPA	EPA#1	29.5	1.6	2.06	0.63	0.56	3.01	0.83	3.64	1.0012492
			S2616 12C#1									
860	8/27/03	EPA	EPA#2	28.7	4.21	1.93	1.77	0.51	1.05	0.72	2.82	0.88232647
			S2617 12C#1		1	2011	1	-				
861	8/27/03	EPA	EPA#3	26.4	2.59	2.58	1.42	0.68	0.95	0.97	2.37	1.1846096
			S2618 12C#1									
862	8/27/03	EPA	EPA#4	30.3	3.98	2.49	1.56	0.65	1.07	0.92	2.63	1.12645461
			S2619 12C#1		į			į				1
863	8/27/03	EPA	EPA#5	25.5	-2.24	2,26	1.83	0.63	1.14	0.91	2.97	1.10679718
			S2620 12C#2									
864	8/27/03	EPA	EPA#1	35.3	3.42	2.14	0.63	0.58	3.19	0.85	3.82	1.02902868
005	0.07.00	5 04	82621 12C#2									
865	8/27/03	EPA	EPA#2	37.2	3.67	3.23	1.92	0.86	2.41	1.23	4.33	1.50083310
000	00700	5B4	S2622 12C#2	05.5]			
866	8/27/03	EPA	EPA#3	35.5	2.69	3,14	3	0.82	0.3	1.12	3.3	1.38809221
867	8/27/03	EDA	S2623 12C#2 EPA#4	37.9	4 30	0.64	1 400	0.00	0.40		0.55	4 04 40 40 -
- 601	0/2//03	<u> </u>	S2624 12C#2	37.9	4.36	2.61	1.09	0.69	2.49	1	3.56	1.21494855
868	8/27/03	EDA	EPA#5	38.1	4.3	2.37	1.11	0.62	2 2.78	0.91	2.00	4.404405
	0/2//00		S2625 12C#3	30.1	4.3	2.37		U.O.	42.70	0.91	3.68	1.10113577
869	8/27/03	FPA	EPA#1	23.7	-1.73	2.32	1.98	0.66	1.46	0.94	24	1 14204722
			82626 12C#3	20.7	-1,73		1.00	0.00	7	0.5-	3.44	1.14284732
870	8/27/03	EPA	EPA#2	22.5	4.25	2.1	0.51	0.55	1.38	0.82	1 90	0.98737024
		1	92827 12C#3				 	4	1 1.00	3.02	1.00	0.00/3/024
871	8/27/03	EPA	EPA#3	22.3	6.08	2.50	-0.07	0.66	2.85	1	27	1.19816526
,			S2628 12C#3			511		1	7		2.7	1.10010020
872	8/27/03	EPA	EPA#4	23.5	1.27	3.2	5 0.42	0.8	7 2.54	1.29	2 04] 3 1.555 9562 9
	1		S2629 12C#3				i Ti 25	1	†	ļ	2.00	
873	8/27/03	EPA	EPA#5	22.8	-0.24	3.	1 1.78	0.80	8 1.74	1.2	3.5	1.48448644

	Nutrai	il Gamma	Spec Report	- Lake	shore E	ast Site			221 North	Columbus	Drive, Chicago,	L
	Dally D	aport for 10'	29/03 & 10/30/03				-					
ample	Sample	Sample	Description	Weight	U-238	U-238	Th-232	Th-232	Ra-226	Re-226	Total Radium	Total Radium
ID	Date	Group	1		Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty
874	10/29/03	beckground	bkg102903	7.5	1.52	1.55		0.42	-0.49	0.63		0.75716576
		soil standard	sollatd102903	36.9	4.27	3.85			2.32	1.4	7.24	1.73216627
876	10/29/03	exclusion zone	92630 13D#1	31.4	45.62	18,83			10.32	5.72		7.40326954
		exclusion zone	S2631 13D#2	33.6	32.41	22.49	66.5		13.92	6.96		8.98354050
		exclusion zone	S2632 13D#3	32.1	17.99	8.71	21.09		7.31	2,87		3.63452885
		exclusion zone	S2633 13D#4	27.7	1.75	19.25			9.69	6.05		7.85510025
880	10/30/03	soil standard	soilstd103003	36.9	3.37	2.93			3.34	1.08		
881	10/30/03	background	bkg103003	7.5	4.03	1.69	-0.36	0.45	-0.38	0.68	-0.74	0.81541400
			S2634 Fill Soil (2)									
882	10/30/03	fill soil	#1	32.6	3.85	2.71	1.63	0.72	-0.47	1.02	1.16	1.24851912
			\$2635 Fill Soil (2)	}				}		1		
883	10/30/03	fill soil	#2	38.8	-2.58	3.7	2.62	1.05	-1.62	1.43	1	1.77409131
			S2636 Fill Soil (2)						ĺ		1	}
884	10/30/03	fill soil	#3	34.9	8.38	3.2	0.66	0.84	1.44	1.18	2.1	1,4484474
			\$2637 Fill Soil (2)									
885	10/30/03	fill soil	#4	36.8	-0.96	2.86	1.21	0.77	0.25	1.12	1.46	1.35915414
	•		\$2638 Fill Soil (2)	i i								1
886	10/30/03	fill soil	# 5	38.6	6.78	3.36	-0.44	0.88	1.78	1.32	1,32	1.58844256
			S2839 Fill Soil (2)									
887	10/30/03	fill soil	#6	37.6	8.77	3.19	0.76	0.82	0.45	1.18	1.21	1.4369411
	!		S2640 Fill Soil (2)	{				1		1		
888	10/30/03	fill soil	#7	38.7	5.73	2.97	7 0.01	0.79	2.45	1.17	2.46	1.4117365
			S2641 Fill Soil (2)							1		
889	10/30/03	fill soil	#8	38.7	-1.43	2.29	1.22	0.63	0.41	0.6	1.63	1.0985900
			S2642 Fill Soil (2)									
890	10/30/03	fill soil	#9	38.8	1.01	3.33	2 0.43	0.9	2.34	1.3	2.7	1.6058953
			S2643 Fill Soil (2)									
89	1 10/30/03	3 fill soil	#10	37.6	1.04	3.3	B -0.0	0.94	3.61	1.4	3.5	1.6946090
			\$2644 Fill Soil (2)									
892			QC	39.6								1.9170028
89		Special GAH	S2845 CM#1	24.2								
89		Special GAH	S2646 CM#2	35.2								
89		Special GAH	S2647 CM#3	35.6								
89		3 Special GAH	S2648 CM#4	31.6		Laboration and the same of the						B 1.139912
89		3 Special GAH	S2649 CM#5	30.5								7 1.4283590
89		3 Special GAH	S2650 CM#6	26.7								
89		3 Special GAH	S2651 CM#7	23.6								5 1.108016
90		3 Special GAH	92652 CM#8	35.5								
90		3 Special GAH	S2653 CM#9	27.7								6 0.9851942
90	2 10/30/0	3 Special GAH	S2654 CM#10	28.4	4.82	1.9	3 -0.0	8 0.5	1 2.3	1 0.7	6 2.2	3 0.9152595

.

	Nutrai	ıl Gammı	a Spec Report	t- Lake	shore E	ast Site			221 North	Columbus I	Orive, Chicago,	L
	Dally Re	port for 11	/11/03	1								
ample	Sample	Sample	Description	Weight	U-238	U-238	Th-232	Th-232	Ra-226	Re-226	Total Radium	Total Redium
ID	Date	Group		·	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty
903	11/11/03	soil standard	solletd111103	36.9	4.91	3.52	4.02	1.08	3.52	1.39	7.54	1.74805608
904	11/11/03	background	bkg111103	7.5	-2.75	1.99	-0.52	0.64	0.83	0.93	0.31	1.12893755
			S2655 13D Pre									
905	11/11/03	Pre EPA	EPA #1	31.5	0.2	4.18	2.44	1.26	3,31	1.72	5.75	2.1321350
		and the same of th	S2656 13D Pre									
906	11/11/03	Pre EPA	EPA #2	30.7	0.42	2.73	2.93	0.86	-0.02	1.09	2.91	1.3884163
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	S2657 13D Pre									
907	11/11/03	Pre EPA	EPA#3	30.4	0.53	2.96	0.35	0.91	1.02	1.28	1.37	1.5705094
			S2658 C.2-3									
908	11/11/03	Pre EPA	Calsson Pre-EPA	32.6	3.23	3.24	-0.01	1	1.54	1.39	1.53	1,7123375
			S2659 C.2-3									
909	11/11/03	EPA	Calsson EPA#1	38.4	1.98	2.39	0.96	0.74	1.53	0.97	2.49	1.2200408
			S2660 C.2-3									
910	11/11/03	EPA	Calseon EPA#2	37.4	3.99	2.82	1.44	0.85	0.46	1.1	1.9	1.3901438
			92661 C.2-3									
911	11/11/03	EPA	Caleson EPA#3	36.7	2.76	2.73	0.13	0.85	1.31	1.16	1.44	1.438089
			S2662 C.2-3			. =						
912	11/11/03	EPA	Calsson EPA#4	40.5	-0.3	1.7	2.54	0.53	0.2	0.7	2.74	0.8780091
040	4444	504	S2883 C.2-3									
913	11/11/03	EPA	Calsson EPA#5	37.6	0.87	3.29	-0.22	1.04	2.1	1.45	1.88	1.7844048
	444450	504	S2664 13D East	-	2.40							
914	11/11/03	EPA	EPA#1	31.6	-3.43	2.14	2.24	0.68	2.31	0.92	4.55	1.1440278
045	4444	CDA	S2665 13D East	04.0	0.07	0.50						1
915	11/11/03	EFA	EPA#2 S2666 13D East	31.3	-2.37	2.59	3.06	0.82	-0.14	1.08	2.92	1.3401492
046	11/11/03	EDA	EPA#3	27.8	0.3	2.92	4.00	0.00				
910	11/11/03	EFA	S2667 13D East	21.0	0.3	2.9	1.08	0.92	2 2.3	1.24	3.38	1.5440207
017	11/11/03	EDA	EPA#4	33.6	-2.28	2.54	1.59	0.8	2.15	1.07	2.7	4 222004
917	11/11/03	EFA	S2668 13D East	33.0	-2.20	2.34	1.58) U.C	2.10	1.07	3.74	1.3360014
018	11/11/03	EDA	EPA#5	33.2	-3.57	1.70	2.98	0.57	0.51	0.74	3.40	0.0040776
- 510	11/11/03	ELV.	\$2669 13D West		-3.57		2.30	0.5/	0.51	0.74	3.48	0.9340770
910	11/11/03	EPA	EPA#1	27.6	-5.38	3.6	1 1.54	1.17	0.82	1.57	2 24	1.9580091
	1171700	ILI A	S2670 13D West		-5.50	3.0		1. [0,64	1.0/	2.30	1.800009
920	11/11/03	EDA	EPA#2	26.5	0.75	2.1	0.98	0.65	2.59	0.89	3.5	1.1020886
	11711700		S2671 13D West	20.0	0.73		0,30	0.00	2.00	0.08	3.5	1.102000
921	11/11/03	FPA	EPA#3	29.6	0.38	3.8	6 2.0	3 1.11	B -0.74	1.52	1 2	1.9242660
			S2872 13D West		0,50	3.0	2.00			1.02	1.3	1.024200
921	11/11/03	EPA	EPA#4	27.7	1.81	2.0	7 1.3	4 0.6	4 1.25	0.84	250	1.056030
			S2873 13D West		1.01	2.0	1		41:5	V.0-	2.0	1.00000
925	11/11/03	EPA	EPA#5	28.4	1.71	2.4	5 1.3	2 0.7	7 1.00	1.0°	22	1.2700390

Notes:

- 1) The sample indicated as "background" is an empty vial inserted into the instrument in the same manner as a soil sample. The empty vial is used to verify that absence of background influences (positive or negative) on the instrumentation. Acceptable results for the background sample are ± 1.0 pCi/g.
- 2) The sample indicated as "soil standard" is a soil sample in the range of the USEPA cleanup level of 7.1 pCi/g total radium. The soil sample was from one of the initial remedial projects in the Streeterville area. It was originally used as a cross-check between laboratories during the initial projects and is now used as daily consistency sample to show repeatability of the instrumentation.

ii. Imported Fill Soil Analyses

Lakeshore East Project - BORROW SOIL STOCKPILE SAMPLING

Offsite Fill

Using USEPA approved procedure SOP 214 Workplan for investigation and Removal of Radiologically Impacted Soil (Revised September 30, 2002)

Excavation Area:	Imported Sand - Wick Drains		
Date Sampled:	7/29/03		Number of Samples
PILE #: West Side of Site	Est. Volume of Lift in Cubic Yards:	500	Required Per SOP 214:

Sample #	Total Radium in pCl/g	QC Sample Dup. Tot. Rad. in pCi/g		S ₂ Std. Dev. for the analyses of the duplicate sample	S _{dae} Std. Dev. of the duplicate sempling & measurement
\$2603 Import Sand WD #1	0.07				
\$2604 Import Sand WD #2	0.34				
\$2605 Import Sand WD #3	-0.89				
S2606 Import Sand WD #4	0.90		}		1
\$2607 Import Sand WD #5	1.30]
S2608 Import Send WD QC		0.40	1.01	0.505	
Number of Samples (n)	5		Sap	= sqrt (8,²+ S2²) =	0.54

Number of Samples (n)	5	S _d
Average (Mean of the sample population) (X bar)	0.34	

Average of samples is <7.1 pCl/g, Proceed wit 214, Parag		OP-
Standard Deviation of sample population (\$1)	0.19	
		"t" value
U _α (True Mean) = (X ber) + (t * (S ₁ /sqrt(n))) Where 't' is a statistic used for small sample tests of hypotheses (the Student Distribution), from SOP No. KMS-102, Attachment 10.6	0.53	2.132
Release Criteria	7.1	
U _α < Release Criteria?	SAMPLES TESTED MEET 95% CONF IS RADIOLOGICALLY ACCEPTABLE BACKFILL PER SOI	FOR USE AS ONSITE

Check if QC Sample Dup. is within 3 Standard Deviations (3 S_{dip}) of the mean of the sample population, per SOP 214, paragraph 12.1 $3 \times S_{dip} = 1.62$ $Mean + 3 S_{dip} = 2.0 QC < (Mean + 3S_{dip})? O.K.$ $Mean - 3 S_{dip} = -1.3 QC > (Mean - 3S_{dip})? O.K.$

CAH 8/15/0

APPROVED: FIELD TEAM LEADER:

APPROVED: PROJECT MANAGER:

Name/date

Lakeshore East Project - BORROW SOIL STOCKPILE SAMPLING

Offsite Fill

Using USEPA approved procedure SOP 214 Workplan for Investigation and Removal of Radiologically Impacted Soil (Revised September 30, 2002)

Excavation Area: _	Fill Soll Batch #2		
Date Sampled:_	10/15/03		Number of Samples
-			Required Per SOP 214
PILE # : South Side of Site	Est. Volume of Lift in Cubic Yards:	10000	10

Sample #	Total Radium in pCl/g	QC Sample Dup. Tot. Rad. In pCi/g	E lab uncertainty	S ₂ Std. Dev. for the analyses of the duplicate sample	S _{dup} Std. Dev. of the duplicate sampling & measurement
S2634Fill Soil (2) #1	1.16				
S2635 Filf Soil (2) #2	1.00				
S2636 Fiff Soil (2) #3	2.10				ţ
\$2637 FM Soll (2) #4	1.46]
S2638 Fill Soll (2) #5	1.32				
82639 FM Soil (2) #6	1.21			•	ł
S2640 Fill Soll (2) #7	2.46				
S2641 FM Soll (2) #8	1.63				
82642 FM Soil (2) #9	2.77				1
\$2643 Fill Soil (2) #10	3.53]
\$2644 Fili Soil (2) QC		1.24	1.92	0.96	
lumber of Samples (n)	10		S.	= sqri $(S_1^2 + S_2^2)$ =	0.97

Number of Samples (n)	10	$S_{0,p} = sqrt(S_1^2 + S_2^2) =$	0.97
Average (Mean of the sample population) (X bar)	1.86	'	

Average of samples is <7.1 pCi/g, Proceed with Confidence Level Check described in SOP- 214, Paragraph 6.12					
Standard Deviation of sample population (S ₁)	0.11				
U _{o.} (True Mean) = (X bar) + (t * (S ₁ /sqrt(n))) Where "t" is a statistic used for small sample tests of hypothesea (the Student Distribution), from SOP No. KMS-102, Attachment 10.6	1.86	"T" value O			
Release Criteria	7.1				
ປ _α < R elease Cr iteria?	SAMPLES TESTED MEET 95% LIFT IS RADIOLOGICALLY ACC ONSITE BACKFILL P	EPTABLE FOR USE AS			

		Standard Deviations (3 S _{dup}) of her SOP 214, paragraph 12.1	
3 x S _{dup}	2.90		
Mean + 3 Sap		QC < [Mean + 38 _{dep}]?	O.K.
Mean - 3 Sap	= -1.0	QC > (Meen - 35 _{de})?	O.K.

APPROVED: FIELD TEAM LEADER:

APPROVED: PROJECT MANAGER:

Name/date

	Nutra	ıl Gamm	a Spec Repor	t- Lake	shore E	ast Site			221 Norti	Columbus	Drive, Chicago,	<u>IL</u>
	Fill Soil	Stockpile -	Batch #2				10,000 cı	ıbiç yards				
Sample .	Sample	Sample	Description	Weight	U-238	U-238	Th-232	Th-232	Ra-226	Ra-226	Total Radium	Total Radium
ID	Date	Group	<u></u>	- 	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty	Activity	Uncertainty
000	400000	#10 11	S2634 Fill Soil (2)	20.0	2.05	0.74	4.00	0.70	0.47	4.00	4.40	4.04054040
062	10/30/03	TH SON	#1 \$2635 Fill Soil (2)	32.6	3.85	2.71	1.63	0.72	-0.47	1.02	1.10	1.24851912
883	10/30/03	fill soil	#2	38.8	-2.56	3.7	2.62	1.05	-1.62	1.43	1	! : 1.774091317
884	10/30/03	fill soil	\$2636 Fill Soil (2) #3	34.9	8.38	3.2	0.66	0.84	1,44	1.18	2.1	1.44844744
885	10/30/03	fill soil	\$2637 Fill Soil (2)	36.8	-0.96	2.86	1.21	0.77		1.12	1.48	1.35915414
	10/30/03		\$2638 Fill Soil (2) #5	38.6	6.78	3.36	-0.44	0.88	i			1.58644256
887	10/30/03	filt soil	\$2639 Fill Soil (2)	37.6	6.77	3.19	0.76	0.82	0,45			1.43694119
888	10/30/03	fill soil	\$2840 Fill Soil (2)	38.7	5.73	2.97	0.01	0.79	2.45			1.41173651
889	10/30/03	fill soil	92641 Fili Soil (2) #8	38.7	-1.43	2.29	1.22	0.63	0.41	0.9	1.63	1.09659000
890	10/30/03	fill soil	S2642 Fill Soil (2)	38.8	1.01	3.32	0.43	0.9	2.34	tre romania in en encombine		1.60589538
891	10/30/03	fili soil	S2643 Fill Soil (2) #10	37.6	1.04	3.38) · · · · · · · · · · · · · · · · · · ·		**************************************			1.69460909
892	10/30/03	fill soil	S2644 Fill Soil (2) QC	39.6	2.98	3.96	0.04	1.1	1.2	1.57	1.24	1.91700288

b. RSSI Gamma Spectroscopy Analyses

HIGH RESOLUTION GAMMA SPECTROSCOPY RSSI ANALYSIS TOTAL RADIUM (pCl/g) LAKE SHORE EAST

RSSI Spectrum File No.	STS Sample No.	Ra-226 ⁽¹⁾	Ra-228 ⁽²⁾	Total Radium
031363	10D#2	41.2	191	232.2
031228	9D South	42.6	36	78.6
031227	9D North	69.4	131	200.4

Notes:

- (1) Pb-214 and Bi-214 average used as surrogate for Ra-226
- (2) Ac-228 measured as surrogate for Ra-228
- (3) ND = below minimum detected activity

Sample Location 10D#2

RSSI High Resolution Gamma Spectroscopy Analysis

Quantum Technology GDR_C Nuclide Activity Summary

Sample ID: 031363 STS 10D#2 P#1-32193-XC

Sample Size 7.55e+002 g Spectrum File h:\pcaspec\031363.spm Sampling Start
Efficiency File.h:\gdr\eff\500mar.eff Library Fileh:\gdr\lib\nuthk.lib ID
Eff.= 1/[7.31e-002*En^-2.40e+000 + 7.89e+001*En^8.95e-001] 04-26-02 12:00
Gamma Fraction Limit >= 71.00 % Decay Limit <= 8.000 Halflives Library Energy Tolerance 1.20

FINAL ACTIVITY REPORT

	Energy	Conc +-	1.00sigma	Halflife		Peaks	
Nuclide	(keV)	(uCi/g)	(hrs)		Found	
*========	=======================================	=========	==========	=======================================	===	=====	========
Bi-214	_		+-5.77e-007	3.32e-001	7 0	f 10	
	609.31	3.80e-005	+-6.78e-007				
			+-3.28e-006				
	934.06		+-6.87e-006				
	1120.30	4.19e-005	+-1.67e-006				
	1238.10	4.41e-005	+-4.78e-006				
	1377.70	3.66e-005	+-6.66e-006				
	1764.50		+-1.86e-006				
Pb-212	Average:	1.97e-004	+-4.65e-007	1.06e+001	6 c	f 6	
	74.82		+-3.34e-006				
	77.11		+-1.57e-006				
	87.30		+-2.26e-006				
	115.19	1.57e-004	+-3.06e-005				
	238.63	2.05e-004	+-5.10e-007				
	300.09		+-3.48e-006				
Pb-214	Average:		+-5.01e-007	4.47e-001	4 0	f 6	
		3.61e-005	+-1.09e-005				
	87.30	3.61e-005	+-7.40e-006				
	295.21	3.48e-005	+-1.00e-006				
	351.92	3.61e-005	+-5.81e-007				
Th-228	84.37	2.13e-004	+-1.83e-005	1.68e+004	1 0	f 2	
Ac-228	Average:	1.91e-004	+-5.65e-007	6.13e+000	10 o	f 10	
	89.95	3.95e-004	+-5.78e-006				
	93.35	2.09e-004	+-4.94e-006				
	209.28	1.42e-004	+-3.12e-006				
	270.23	1.56e-004	+-3.43e-006				
	327.64	1.55e-004	+-3.53e-006				

	338.32	1.85e-004 +-1.28e-006
	463.00	1.68e-004 +-2.68e-006
	794.70	1.63e-004 +-3.07e-006
	911.07	1.96e-004 +-8.81e-007
	969.11	2.01e-004 +-1.24e-006
Ra-226	186.10	I.D.Only 1.40e+007 1 of 1
K-40	1460.80	2.10e-005 +-1.10e-006 1.12e+013 1 of 1
TOTAL:		7.05e-004 uCi/g

UNKNOWN PEAKS

Energy (keV)	Centroid Channel		Un- Certainty	C.L. Counts	Bkg. Counts	FWHM (keV)	Net Gamma/sec
51.67	221.93	25928	======== 428	819	33689	2.09	6.852e+002
105.65	442.19	7950	634	1323	71766	1.70	5.884e+001
108.95	455.64	2583	674	1439	70847	1.66	1.851e+001
129.33	538.79	17087	620	1253	78837	1.64	1.070e+002
154.29	640.60	5322	571	1171	68838	1.57	3.149e+001
277.53	1143.38	13017	499	1042	35892	2.04	9.631e+001
288.10	1186.51	1980	492	1063	32173	1.66	1.504e+001
409.57	1681.98	8624	303	601	16624	1.82	8.651e+001
453.26	1860.13	2087	255	522	12548	2.12	2.281e+001
510.79	2094.79	30383	331	591	14855	2.06	3.681e+002
562.66	2306.32	2732	234	47 5	10829	2.17	3.601e+001
583.34	2390.64	101953	437	634	14825	2.00	1.387e+003
755.60	3093.08	2313	238	499	8387	1.88	3.954e+001
763.61	3125.74	1177	262	559	9654	1.71	2.031e+001
772.63	3162.54	3163	187	368	6802	2.10	5.515e+001
782.37	3202.24	1376	168	344	5113	2.04	2.426e+001
785.80	3216.21	3361	175	347	5171	2.31	5.949e+001
830.75	3399.50	1644	164	340	4047	2.57	3.057e+001
836.03	3421.00	4614	146	265	3682	2.52	8.629e+001
840.51	3439.30	2362	155	313	3669	2.22	4.438e+001
860.85	3522.20	12046	184	310	4246	2.19	2.312e+002
893.81	3656.58	846	128	260	3243	1.85	1.679e+001
904.39	3699.71	1371	182	383	4658	1.80	2.750e+001
965.23	3947.73	12149	154	221	2703	2.52	2.582e+002
988.44	4042.35	404	114	236	2467	1.28	8.771e+000
1065.47	4356.36	631	103	208	2070	2.02	1.465e+001
1079.16	4412.16	1132	105	208	1988	2.01	2.658e+001
1094.89	4476.27	1235	113	226	2171	2.06	2.937e+001
1111.00	4541.96	902	103	206	1960	1.89	2.174e+001
1247.18	5096.98	1002	154	328	2833	2.66	2.677e+001
1496.89	6114.57	1616	98	191	1284	2.46	5.083e+001
1502.34	6136.76	847	91	184	1223	2.25	2.673e+001
1513.74	6183.23	402	85	172	1430	1.86	1.277e+001
1581.63	6459.82	996	109	228	1411	2.71	3.291e+001
1589.07	6490.15	5864	107	156	1111	2.76	1.946e+002
1593.38	6507.70	3449	103	181	1080	2.82	1.147e+002
1621.65	6622.85	2198	102	189	1575	2.56	7.427e+001
1631.59	6663.38	2615	108	205	1361	2.37	8.884e+001
1639.14	6694.13	631	106	223	1510	1.98	2.153e+001
1730.50	7066.30	457	84	172	1215	2.10	1.637e+001

RSSI High Resolution Gamma Spectroscopy Analysis

Quantum Technology GDR_C Version 6.0

Sample	TD	:	031363	STS	10D#2	P#1	-32193-XC

Sample Size			7.55e+002 g	-	<pre>Spectrum File h:\pcaspec\031363.spm</pre>	
Sampling Start.			.00-00-00 00:00	i	Counting Start 04-07-03 14:48	
Sampling Stop .			.00-00-00 00:00	-	Live Time	
Current Date	•		.00-00-00 00:00		Real Time 0 Sec	

Detector #: 1

Energy(keV) = $-2.72 + 0.245 \times Ch + 2.84e - 008 \times Ch^2 + 0.00e + 000 \times Ch^3 00 - 00 - 00 00:00$

PEAK SEARCH RESULTS

PK.	ENERGY	ADDRESS	NET	UN-	C.L.	BKG	FWHM	
#	(keV)	CHANNEL	COUNTS	CERTAINTY	COUNTS	COUNTS	(keV)	FLAG
====	=======	=======	=========	=========	*****	=========	=======	========
1	51.67	221.94	25928	428	819	33689	2.09	
2	75.08	317.46	60012	784	1616	74020	2.25	a
3	77.38	326.83	65989	654	1272	63258	1.65	b
4	84.78	357.05	7240	620	1293	69199	1.46	С
5	87.39	367.68	32993	515	979	55468	1.92	d
6	90.12	378.83	24451	358	608	35598	1,87	e
7	93.40	392.20	22328	526	1025	60946	1.67	f
8	99.88	418.62	868	694	1464	85479	1.35	g NET < CL
9	105.65	442.19	7950	634	1323	71766	1.70	h
10	108.95	455.64	2583	674	1439	70847	1.66	i
11	115.22	481.22	3760	735	1591	69929	1.58	j
12	129.33	538.79	17087	620	1253	78837	1.64	
13	154.29	640.60	5322	571	1171	68838	1.57	
14	186.19	770.77	7467	511	1036	56441	1.88	
15	209.37	865.31	26409	583	1184	55365	1.84	a
16	216.16	893.04	1123	610	1296	61871	1.42	b NET < CL
17	238.94	985.94	369191	918	1481	69230	1.84	
18	270.36	1114.11	20466	449	904	30209	1.95	а
19	277.53	1143.38	13017	499	1042	35892	2.04	b
20	288.10	1186.51	1980	492	1063	32173	1.66	a
21	295.32	1215.93	12294	353	693	24017	2.08	b
22	300.21	1235.88	19836	410	822	23666	2.03	С
23	328.08	1349.56	15675	357	694	23176	1.83	
24	338.45	1391.87	64821	448	774	25476	1.89	
25	351.96	1446.97	21582	346	654	19696	1.94	
26	409.58	1681.98	8624	303	601	16624	1.82	
27	453.26	1860.13	2087	255	522	12548	2.12	

```
28
     463.10 1900.30
                          17632
                                                   515
                                        282
                                                            12761
                                                                    1.98
29
     510.79 2094.79
                          30478
                                        331
                                                   591
                                                            14855
                                                                    2.06
30
     562.66 2306.32
                           2732
                                        234
                                                   475
                                                            10829
                                                                    2.17
31
     583.34 2390.64
                         101981
                                        437
                                                   634
                                                            14825
                                                                    2.00
32
     609.47 2497.21
                          14611
                                        260
                                                   480
                                                            10600
                                                                    2.04
33
     727.47 2978.37
                           22114
                                        275
                                                   487
                                                             9702
                                                                    2.17
34
     755.60 3093.08
                           2313
                                        238
                                                   499
                                                             8387
                                                                    1.88 a
35
     763.61 3125.74
                           1177
                                        262
                                                   559
                                                             9654
                                                                    1.71 b
     772.63 3162.54
36
                           3163
                                                   368
                                                             6802
                                                                    2.10
                                       187
37
     782.37 3202.24
                           1376
                                                             5113
                                        168
                                                   344
                                                                    2.04 a
38
     785.80 3216.21
                           3361
                                       175
                                                   347
                                                             5171
                                                                    2.31 b
39
     795.21 3254.58
                          11145
                                       210
                                                   382
                                                             6192
                                                                    2.04
40
     830.75 3399.50
                           1644
                                       164
                                                   340
                                                             4047
                                                                    2.57 a
     836.03 3421.00
41
                           4614
                                       146
                                                   265
                                                             3682
                                                                    2.52 b
42
     840.51 3439.30
                           2362
                                       155
                                                   313
                                                             3669
                                                                    2.22 c
43
     860.85 3522.20
                          12046
                                       184
                                                   310
                                                             4246
                                                                    2.19
44
     893.81 3656.58
                                       128
                                                             3243
                                                                    1.85
                            846
                                                   260
45
     904.39 3699.71
                           1371
                                                             4658
                                       182
                                                   383
                                                                    1.80 a
46
     911.54 3728.85
                          71140
                                       319
                                                   376
                                                             4549
                                                                    2.44 b
47
     934.63 3823.00
                            660
                                       125
                                                   256
                                                             2900
                                                                    2.56
     958.86 3921.79
48
                            258
                                       143
                                                   304
                                                             3114
                                                                    1.66 a NET < CL
     965.23 3947.73
49
                                                             2703
                          12149
                                       154
                                                   221
                                                                    2.52 b
     969.33 3964.44
50
                          41366
                                       255
                                                   330
                                                             3504
                                                                    2.45 c
51
     988.44 4042.36
                            404
                                       114
                                                   236
                                                            2467
                                                                    1.28
52
    1065.47 4356.36
                                                            2070
                            631
                                                   208
                                                                    2.02
                                       103
53
    1079.16 4412.16
                           1132
                                       105
                                                   208
                                                            1988
                                                                    2.01
    1094.89 4476.27
54
                           1235
                                       113
                                                   226
                                                            2171
                                                                    2.06
55
    1111.00 4541.96
                                                            1960
                            902
                                       103
                                                  206
                                                                    1.89
56
    1120.93 4582.41
                           3081
                                       122
                                                  227
                                                            2275
                                                                    2.37
57
    1238.86 5063.07
                           1156
                                       125
                                                  260
                                                            2123
                                                                    2.54 a
58
    1247.18 5096.98
                           1002
                                       154
                                                  328
                                                            2833
                                                                    2.66 b
59
    1378.58 5632.46
                            603
                                       110
                                                  225
                                                            2149
                                                                    2.06
60
    1460.57 5966.57
                           2218
                                       107
                                                  203
                                                            1619
                                                                    2.95
    1496.89 6114.57
61
                           1616
                                                                    2.46 a
                                        98
                                                  191
                                                            1284
62
    1502.34 6136.76
                                        91
                                                                    2.25 b
                            847
                                                  184
                                                            1223
63
    1513.75 6183.23
                            402
                                        85
                                                            1430
                                                                    1.86
                                                  172
64
    1581.63 6459.82
                            996
                                                            1411
                                                                    2.71 a
                                       109
                                                  228
    1589.07 6490.15
                           5864
65
                                                                    2.76 b
                                       107
                                                  156
                                                            1111
    1593.38 6507.70
                           3449
                                                            1080
                                                                    2.82 c
66
                                       103
                                                  181
67
    1621.65 6622.85
                           2198
                                       102
                                                  189
                                                            1575
                                                                    2.56
68
    1631.59 6663.38
                           2615
                                                            1361
                                       108
                                                  205
                                                                    2.37 a
69
    1639.14 6694.13
                            631
                                       106
                                                            1510
                                                                    1.98 b
                                                  223
70
    1730.50 7066.30
                            457
                                                            1215
                                                                    2.10
                                        84
                                                  172
71
    1765.61 7209.32
                           2575
                                        95
                                                  168
                                                            1157
                                                                    2.49
```

RSSI High Resolution Gamma Spectroscopy Analysis

Quantum Technology

GDR_C Background Subtract Results

control c

Sample ID : 031363 STS 10D#2 P#1-32193-XC

Bkg File: . . . h:\gdr\bkg\nocal.bkg | Counting Start. . . . 04-07-03 14:48 ID.: . . NOCAL 24 Hour Background | Current Date 00-00-00 00:00

PK#	ENERGY (keV)	FWHM (keV)	OLD NET COUNTS	OLD UN- CERTAINTY	NEW NET COUNTS	NEW UN- CERTAINTY	FLAG
2	75.08	2.25	60012	784	59884	784	
4	84.78	1.46	7240	620	7210	620	
7	93.40	1.67	22328	526	22301	526	
14	186.19	1.88	7467	511	7432	511	
17	238.94	1.84	369191	918	369159	918	
21	295.32	2.08	12294	353	12274	353	
25	351.96	1.94	21582	346	21538	347	
29	510.79	2.06	30478	331	30383	331	
31	583.34	2.00	101981	437	101953	437	
32	609.47	2.04	14611	260	14564	260	
46	911.54	2.44	71140	319	71113	319	
50	969.33	2.45	41366	255	41350	255	
56	1120.93	2.37	3081	122	3062	122	
60	1460.57	2.95	2218	107	2032	107	

Sample Location 9D South

RSSI High Resolution Gamma Spectroscopy Analysis

~______

Quantum Technology GDR_C Nuclide Activity Summary

Sample ID: 031228 STS P# 1-32193-XC 9D SOUTH

FINAL ACTIVITY REPORT

Nuclide	Energy (keV)	Conc +- (uCi/g	1.00sigma }	Halflife (hrs)		eaks ound	
Bi-214	609.31 727.17 768.36 934.06 1120.30	4.52e-005 4.89e-005 3.91e-005 5.04e-005 4.62e-005 4.46e-005 5.09e-005	+-2.62e-006 +-3.65e-006 +-1.15e-006	3.32e-001	8 of	10	
Pb-212	Average: 74.82 77.11 87.30 238.63	3.49e-005 3.56e-005 3.56e-005 1.86e-005	+-1.95e-007 +-1.53e-006 +-7.53e-007 +-1.03e-006 +-2.10e-007	1.06e+001	5 of	6	
Pb-214	Average: 74.82 77.11 87.30 241.98 295.21 351.92	3.89e-005 3.10e-005 3.89e-005 3.89e-005 3.88e-005	+-3.17e-007 +-5.03e-006 +-2.47e-006 +-3.37e-006 +-1.20e-006 +-6.25e-007 +-3.96e-007	4.47e-001	6 of	6	
Th-228 Ac-228	84.37 Average:	3.42e-005 3.60e-005 6.50e-005 2.47e-005	+-1.08e-005 +-2.55e-007				

Ra-226 Ra-224 K-40	270.23 327.64 338.32 463.00 794.70 911.07 969.11 186.10 240.98 1460.80	3.02e-005 3.54e-005 3.29e-005 3.12e-005 3.67e-005 3.83e-005	+-1.73e-006 +-1.60e-006 +-5.68e-007 +-1.30e-006 +-1.51e-006 +-3.92e-007 +-5.60e-007 I.D.Only +-1.16e-006 +-6.50e-007	8.69e+001	1 c 1 c 1 c	of 1
TOTAL:		2.43e-004	uCi/g			

UNKNOWN PEAKS

Energy (keV)	Centroid Channel	Net Counts	Un- Certainty	C.L. Counts	Bkg. Counts	FWHM (keV)	Net Gamma/sec
#######		=======================================		======	=======	======	· · · · · · · · · · · · · · · · · · ·
51.69	222.04	7881	232	443	9874	2.11	2.080e+002
129.35	538.87	3593	310	626	20605	1.47	2.251e+001
277.49	1143.22	2662	262	552	9996	1.80	1.969e+001
409.50	1681.69	1598	143	283	4211	1.90	1.603e+001
510.77	2094.71	6463	164	300	3831	2.04	7.830e+001
562.76	2306.74	681	116	234	2641	1.68	8.977e+000
583.37	2390.79	20465	196	281	3492	1.95	2.784e+002
665.71	2726.56	456	101	203	2075	1.70	6.968e+000
755.53	3092.81	553	92	185	1712	2.08	9.453e+000
772.54	3162.16	1003	93	183	1501	2.72	1.749e+001
786.10	3217.44	766	97	194	1740	2.29	1.356e+001
806.11	3299.03	466	81	163	1228	1.87	8.437e+000
835.97	3420.79	679	78	154	1047	1.64	1.270e+001
840.26	3438.27	895	87	173	1214	3.57	1.681e+001
860.94	3522.56	2338	91	161	1196	2.05	4.488e+001
965.13	3947.34	2553	82	133	832	2.25	5.426e+001
1155.51	4723.35	395	65	130	715	1.92	9.858e+000
1408.67	5755.08	419	62	125	616	2.03	1.248e+001
1496.78	6114.10	340	51	99	452	2.29	1.069e+001
1509.83	6167.28	249	57	116	616	1.15	7.893e+000
1589.05	6490.04	1038	60	108	476	2.41	3.444e+001
1593.27	6507.25	613	52	95	405	2.37	2.039e+001
1621.57	6622.55	486	52	99	438	2.30	1.642e+001
1631.60	6663.41	559	50	94	388	2.17	1.899e+001
1730.69	7067.06	696	47	81	277	2.15	2.493e+001
1848.46	7546.81	446	47	89	313	2.74	1.694e+001
			= -				· · · · · · · · ·

RSSI High Resolution Gamma Spectroscopy Analysis Quantum Technology GDR C Version 6.0 Sample ID: 031228 STS P# 1-32193-XC 9D SOUTH Sample Size 7.90e+002 g | Spectrum File . . H:\PCASPEC\031228.SPM Sampling Start.00-00-00 00:00 | Counting Start. 03-27-03 11:11 0 Sec ______ Detector #: 1 Energy (keV) = $-2.72 + 0.245 \times Ch + 2.84e - 008 \times Ch^2 + 0.00e + 000 \times Ch^3 00 - 00 - 00 00:00$ $FWHM(keV) = 1.49 + 0.019*En +-2.37e-005*En^2 + 0.00e+000*En^3 04-24-03 09:00$ Where En = Sqrt(Energy in keV) Sensitivity 2.00 | Search Start / End. 0 / 8191

PEAK SEARCH RESULTS

Sigma Multiplier. 1.00 \mid

PK. #	ENERGY (keV)	CHANNEL			C.L. COUNTS	COUNTS	FWHM (keV)	FLAG
1 2 3 4 5 6 7	51.69 74.99 77.25 84.90 87.47 90.02 93.73	222.04 317.09 326.31 357.51 367.99 378.39 393.53	7881 13101 19612 1242 7297 4205 2782	232 376 328 385 246 186 299	443 768 619 812 455 328 604	9874 19682 17386 25154 14869 10795 19371	2.11 1.72 1.70 1.51 1.66 1.65 1.55	b c d e f
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	277.49 295.38 300.28 328.05 338.46 352.07 409.50	1216.17 1236.16 1349.44 1391.92 1447.42 1681.69	249 351 3593 5518 5637 66940 13290 4546 2662 14353 4023 3194 12932 24330 1598	399 383 310 272 266 396 197 238 262 231 188 170 208 247 143	853 827 626 535 523 638 323 485 552 416 370 328 361 403 283	20605 15820 14417 14750 6456 8529 9996 7005 6074 5677 6248 6656 4211	1.48 1.47 1.69 1.85 1.92 2.25 1.84 1.80 1.99 2.05 1.65 1.86 1.89	b a b a
23 24 25 26 27	510.77 562.76 583.37	1900.38 2094.71 2306.74 2390.79 2497.36	3613 6558 681 20493 18184	143 164 116 196 191	270 300 234 281 287	3515 3831 2641 3492 3132	2.01 2.04 1.68 1.95 2.04	

727.54	2726.56 2978.67 3092.81 3146.17 3162.16 3217.44 3254.69	456 4278 553 1392 1003 766	101 126 92 93 93	203 225 185 178 183	2075 2324 1712 1452	1.70 2.02 2.08 1.91 a
755.53 768.62 772.54 786.10 795.23	3092.81 3146.17 3162.16 3217.44	553 1392 1003	92 93 93	185 178	1712 1452	2.08 1.91 a
768.62 772.54 786.10 795.23	3146.17 3162.16 3217.44	1392 1003	93 93	178	1452	1.91 a
772.54 786.10 795.23	3162.16 3217.44	1003	93			=
786.10 795.23	3217.44			102	4 = 6 4	
795.23		766		103	1501	2.72 b
	3254.69		97	194	1740	2.29
806.11		2232	108	205	1728	1.68
	3299.03	466	81	163	1228	1.87
835.97	3420.79	679	78	154	1047	1.64 a
840.26	3438.27	895	87	173	1214	3.57 b
860.94	3522.56	2338	91	161	1196	2.05
911.59	3729.06	13921	149	189	1575	2.10
934.57	3822.74	959	69	129	772	2.32
965.13	3947.34	2553	82	133	832	2.25 a
969.36	3964.58	8256	121	168	1102	2.41 b
1120.86	4582.13	3547	88	135	844	2.39
1155.51	4723.35	395	65	130	715	1.92
1238.79	5062.81	1222	75	139	819	2.10
1378.49	5632.09	876	68	129	711	2.30
1408.67	5755.09	419	62	125	616	2.03
1461.30	5969.55	1444	66	114	509	2.58
1496.78	6114.10	340	51	99	452	2.29
1509.83	6167.28	249	57	116	616	1.15
1589.05	6490.04	1038	60	108	476	2.41 a
1593.27	6507.25	613	52	95	405	2.37 b
1621.57	6622.55	486	52	99	438	2.30
1631.60	6663.41	559	50	94	388	2.17
1730.69	7067.06	696	47	81	277	2.15
1765.57	7209.17	2874	71	98	412	2.47
1848.46	7546.82	446	47	89	313	2.74
	835.97 840.26 860.94 911.59 934.57 965.13 969.36 1120.86 1155.51 1238.79 1378.49 1408.67 1461.30 1496.78 1509.83 1589.05 1593.27 1621.57 1631.60 1730.69 1765.57	806.11 3299.03 835.97 3420.79 840.26 3438.27 860.94 3522.56 911.59 3729.06 934.57 3822.74 965.13 3947.34 969.36 3964.58 1120.86 4582.13 1155.51 4723.35 1238.79 5062.81 1378.49 5632.09 1408.67 5755.09 1461.30 5969.55 1496.78 6114.10 1509.83 6167.28 1589.05 6490.04 1593.27 6507.25 1621.57 6622.55 1631.60 6663.41 1730.69 7067.06 1765.57 7209.17	795.23 3254.69 2232 806.11 3299.03 466 835.97 3420.79 679 840.26 3438.27 895 860.94 3522.56 2338 911.59 3729.06 13921 934.57 3822.74 959 965.13 3947.34 2553 969.36 3964.58 8256 1120.86 4582.13 3547 1155.51 4723.35 395 1238.79 5062.81 1222 1378.49 5632.09 876 1408.67 5755.09 419 1461.30 5969.55 1444 1496.78 6114.10 340 1509.83 6167.28 249 1589.05 6490.04 1038 1593.27 6507.25 613 1621.57 6622.55 486 1631.60 6663.41 559 1730.69 7067.06 696 1765.57 7209.17 2874	786.10 3217.44 766 97 795.23 3254.69 2232 108 806.11 3299.03 466 81 835.97 3420.79 679 78 840.26 3438.27 895 87 860.94 3522.56 2338 91 911.59 3729.06 13921 149 934.57 3822.74 959 69 965.13 3947.34 2553 82 969.36 3964.58 8256 121 1120.86 4582.13 3547 88 1155.51 4723.35 395 65 1238.79 5062.81 1222 75 1378.49 5632.09 876 68 1408.67 5755.09 419 62 1461.30 5969.55 1444 66 1496.78 6114.10 340 51 1509.83 6167.28 249 57 1589.05 6490.04 1038 60 1593.27 6507.25 613 52	786.10 3217.44 766 97 194 795.23 3254.69 2232 108 205 806.11 3299.03 466 81 163 835.97 3420.79 679 78 154 840.26 3438.27 895 87 173 860.94 3522.56 2338 91 161 911.59 3729.06 13921 149 189 934.57 3822.74 959 69 129 965.13 3947.34 2553 82 133 969.36 3964.58 8256 121 168 1120.86 4582.13 3547 88 135 1155.51 4723.35 395 65 130 1238.79 5062.81 1222 75 139 1378.49 5632.09 876 68 129 1408.67 5755.09 419 62 125 1461.30 5969.55 1444 66 114 1496.78 6114.10 340 51	786.10 3217.44 766 97 194 1740 795.23 3254.69 2232 108 205 1728 806.11 3299.03 466 81 163 1228 835.97 3420.79 679 78 154 1047 840.26 3438.27 895 87 173 1214 860.94 3522.56 2338 91 161 1196 911.59 3729.06 13921 149 189 1575 934.57 3822.74 959 69 129 772 965.13 3947.34 2553 82 133 832 969.36 3964.58 8256 121 168 1102 1120.86 4582.13 3547 88 135 844 1155.51 4723.35 395 65 130 715 1238.79 5062.81 1222 75 139 819 1378.49 5632.09 876 68 129 711 1408.67 5755.09

RSSI High Resolution Gamma Spectroscopy Analysis

Quantum Technology GDR_C Background Subtract Results

Sample ID: 031228 STS P# 1-32193-XC 9D SOUTH

Bkg File:h:\gdr\bkg\nocal.bkg | Counting Start. 03-27-03 11:11 ID.: . . . NOCAL 24 Hour Background | Current Date 00-00-00 00:00

PK#	ENERGY (keV)	FWHM (keV)	OLD NET COUNTS	OLD UN- CERTAINTY	NEW NET COUNTS	NEW UN- CERTAINTY	FLAG
2	74.99	1.72	13101	376	12990	376	
4	84.90	1.51	1242	385	1214	385	
7	93.73	1.55	2782	299	2766	299	
11	186.36	1.69	5518	272	5483	272	
13	238.79	1.92	66940	396	66908	396	
17	295.38	1.99	14353	231	14333	231	
21	352.07	1.89	24330	247	24286	247	
24	510.77	2.04	6558	164	6463	164	
26	583.37	1.95	20493	196	20465	196	
27	609.50	2.04	18184	191	18137	191	
39	911.59	2.10	13921	149	13894	149	
42	969.36	2.41	8256	121	8240	121	
43	1120.86	2.39	3547	88	3528	88	
48	1461.30	2.58	1444	66	1258	66	

Sample Location 9D North

RSSI High Resolution Gamma Spectroscopy Analysis

Quantum Technology GDR_C Nuclide Activity Summary

Sample ID: 031227 STS P#1-32193-XC 9D NORTH

Sample Size 7.80e+002 g Spectrum File H:\PCASPEC\031227.SPM Sampling Start
<pre>Efficiency File.h:\gdr\eff\500mar.eff Library Fileh:\gdr\lib\nuthk.lib ID</pre>
Eff.= 1/[7.31e-002*En^-2.40e+000 + 7.89e+001*En^8.95e-001] 04-26-02 12:00
Gamma Fraction Limit >= 71.00 % Decay Limit <= 8.000 Halflives Library Energy Tolerance 1.20

FINAL ACTIVITY REPORT

Nuclide	Energy (keV)	Conc +- (uCi/g	1.00sigma)	Halflife (hrs)	F	eaks ound	
=		.=======:				=====	=========
Bi-214	_		+-5.69e-007	3.32e-001	8 of	10	
	609.31		+-6.73e-007				
	727.17		+-2.56e-006				
			+-4.07e-006				
	934.06		+-6.53e-006				
	1120.30		+-1,80e-006				
	1238.10		+-4.36e-006				
	1377.70		+-6.32e-006				
	1764.50		+-1.96e-006				
Pb-212	Average:	1.23e-004	+-3,55e-007	1.06e+001	6 of	6	
	74.82	1.26e-004	+-2.75e-006				
	77.11	1.05e-004	+-1.36e-006				
	87.30	8.04e-005	+-1.81e-006				
	115.19	1.26e-004	+-2.28e-005				
	238.63	1.26e-004	+-3.83e-007				
	300.09	1.09e-004	+-2.91e-006				
Pb-214	Average:	6.13e-005	+-4.61e-007	4.47e-001	5 of	6	
	74.82	6.09e-005	+-9.03e-006				
	87.30	6.09e-005	+-5.94e-006				
	241.98	6.09e-005	+-2.06e-006				
	295.21	6.26e-005	+-9.29e-007				
	351.92	6.09e-005	+-5.54e-007				
Th-228	84.37	1.29e-004	+-1.64e-005	1.68e+004	1 of	2	
Ac-228	Average:	1.31e-004	+-4.78e-007	6.13e+000	10 of	10	
	89.95		+-4.93e-006				
	93.35		+-4.16e-006				
	209.28		+-2.63e-006				
	270.23		+-2.84e-006				
			2.010 000				

	327.64	1.02e-004	+-2.92e-006				
	338.32	1.28e-004	+-1.14e-006				
	463.00	1.14e-004	+-2.29e-006				
	794.70	1.16e-004	+-2.72e-006				
	911.07	1.36e-004	+-7.37e-007				
	969.11	1.37e-004	+-1.03e-006				
Ra-226	186.10		I.D.Only	1.40e+007	1	of	1
Ra-224	240.98	1.46e-004	+-1.99e-006	8.69e+001	1	of	1
K-40	1460.80	1.69e-005	+-1.06e-006	1.12e+013	1	of	1
TOTAL:		6.85e-004	uCi/g				

UNKNOWN PEAKS

Energy (keV)	Centroid Channel		Un- Certainty	C.L. Counts	Bkg. Counts	FWHM (keV)	Net Gamma/sec
51.41	== === ===============================	10054	448	934	30051	1.49	2.686e+002
105.69	442.34	3361	621	1332	54860	1.35	2.487e+001
129.37	538.97	12391	528	1061	59301	1.65	7.761e+001
154.10	639.86	4013	454	914	48577	1.74	2.374e+001
277.56	1143.51	10080	468	983	30536	2.20	7.459e+001
288.27	1187.17	1467	443	956	26174	1.94	1.115e+001
409.59	1682.05	6156	259	512	12608	1.88	6.176e+001
453.14	1859.67	992	209	425	9517	1.60	1.084e+001
510.83	2094.97	22163	292	526	11756	2.09	2.685e+002
562.67	2306.36	2001	191	381	7634	1.72	2.637e+001
583.34	2390.66	72177	365	522	10775	2.02	9.818e+002
755.51	3092.73	2054	240	515	6478	2.38	3.511e+001
763.62	3125.80	1274	226	482	6899	2.53	2.198e+001
772.53	3162.11	2838	158	305	4709	2.19	4.948e+001
782.54	3202.94	853	247	535	7341	1.74	1.504e+001
785.75	3216.00	2526	175	361	4081	1.90	4.471e+001
830.53	3398.60	848	141	294	3200	1.68	1.577e+001
836.04	3421.04	3349	140	265	3385	2.28	6.263e+001
840.25	3438.23	1951	139	280	2981	2.20	3.665e+001
860.86	3522.24	8136	158	270	3360	2.03	1.562e+002
893.82	3656.63	601	125	257	2929	1.67	1.193e+001
904.53	3700.31	1086	162	341	3637	2.01	2.179e+001
965.15	3947.41	8935	140	215	2173	2.29	1.899e+002
1078.94	4411.26	890	95	189	1640	2.43	2.089e+001
1094.58	4475.02	1098	109	219	1890	2.54	2.611e+001
1111.16	4542.58	644	98	198	1738	1.92	1.552e+001
1155.48	4723.24	829	98	195	1688	3.12	2.069e+001
1247.43	5098.01	502	142	306	2557	2.02	1.342e+001
1281.74	5237.83	466	101	209	1787	1.86	1.276e+001
1408.75	5755.41	631	88	176	1424	2.27	1.880e+001
1496.72	6113.85	623	89	183	1224	2.14	1.959e+001
1581.76	6460.35	789	102	214	1263	2.68	2.607e+001
1589.00	6489.86	4082	95	148	1009	2.61	1.354e+002
1593.33	6507.49	2320	93	170	996	2.83	7.716e+001
1621.51	6622.29	1668	93	174	1342	2.27	5.635e+001
1631.57	6663.28	1912	98	189	1157	2.42	6.496e+001
1639.26	6694.61	530	92	191	1166	2.18	1.808e+001
1730.70	7067.12	938	80	157	1008	2.66	3.359e+001
1848.54	7547.13	526	74	147	954	2.18	1.998e+001

RSSI High Resolution Gamma Spectroscopy Analysis

Quantum Technology GDR_C Version 6.0

Sample	TD	•	031227	STS	P#1-32193-XC 9D NORTH
Danibac	10	•	00121		

Sample Size			7.80e+002 g l	Spectrum File	H:\PCASPEC\031227.SPM
Sampling Start.			.00-00-00 00:00 1	Counting Start	03-27-03 09:36
Sampling Stop .			.00-00-00 00:00	Live Time	3600 Sec
Current Date	•		.00-00-00 00:00 1	Real Time	0 Sec

Detector #: 1

Energy(keV) = $-2.72 + 0.245*Ch + 2.84e-008*Ch^2 + 0.00e+000*Ch^3 00-00-00 00:00$

FWHM(keV) = $1.49 + 0.019*En +-2.37e-005*En^2 + 0.00e+000*En^3 04-24-03 09:00$ Where En = Sqrt(Energy in keV)

PEAK SEARCH RESULTS

PK.	ENERGY	ADDRESS	NET	UN~	C.L.	BKG	FWHM	
#	(keV)	CHANNEL	COUNTS	CERTAINTY	COUNTS	COUNTS	(keV)	FLAG
====	======	=======	========	=======	=======================================	========	======	=========
1	45.54	201.00	0	248	497	15958	0.01	a NET < CL
2	51.41	220.89	10054	448	934	30051	1.49	b
3	75.24	318.12	47012	671	1369	57490	2.35	a
4	77.48	327.25	45432	590	1161	54390	1.44	b
5	85.12	358.41	4581	578	1206	62110	1.73	С
6	87.48	368.06	23373	427	794	42933	1.74	d
7	90.16	378.97	16300	316	541	29393	1.83	е
8	93.33	391.92	9639	457	906	47824	1.72	f
9	99.90	418.73	146	668	1433	68520	1.37	g NET < CL
10	105.69	442.34	3361	621	1332	54860	1.35	h
11	115.31	481.59	3134	565	1176	61142	1.78	
12	129.37	538.97	12391	528	1061	59301	1.65	
13	154.10	639.86	4013	454	914	48577	1.74	
14	186.31	771.26	8327	465	937	46186	1.96	
15	209.44	865.62	20192	507	1014	47304	1.76	
16	238.77	985.25	234551	711	1112	43756	1.97	a
17	241.42	996.05	34426	334	561	19098	2.13	b
18	270.45	1114.50	14721	384	772	22728	1.76	a
19	277.56	1143.51	10080	468	983	30536	2.20	b
20	288.27	1187.17	1467	443	956	26174	1.94	a
21	295.34	1216.01	22846	339	626	19572	2.05	b
22	300.24	1236.01	13263	354	712	18445	1.99	С
23	328.08	1349.56	10623	305	593	17662	1.82	
24	338.48	1391.99	46346	413	744	21868	1.84	
25	352.06	1447.39	37544	341	582	16299	1.90	
26	409.59	1682.05	6156	259	512	12608	1.88	
27	453.14	1859.67	992	209	425	9517	1.60	
28	463.14	1900.45	12373	249	462	10277	1.86	

20	E10 00	2004 25	22252	201	F0.	11756	2 22
29		2094.97		291	526	11756	2.09
30		2306.36		191	381	7634	1.72
31	583.34	2390.66	72205	365	522	10775	2.02
32	609.51	2497.40	27591	267	435	8700	1.94
33	727.55	2978.70	15813	221	379	6608	2.08
34		3092.73		240	515	6478	
35		3125.80		226	482	6899	2.53 b
36		3146.20		143	273	4201	2.32 c
37		3162.11		158	306	4709	2.19 d
38							
		3202.94		247	535	7341	1.74 e
39		3216.00		175	361	4081	1.90 f
40		3254.66		192	359	5087	
41		3398.60		141	294	3200	1.68 a
42	836.04	3421.04		140	265	3385	2.28 b
43	840.25	3438.23	1951	139	280	2981	2.20 c
44	860.86	3522.24	8136	158	270	3360	2.03
45	893.82	3656.63	601	125	257	2929	1.67
46	904.53	3700.31	1086 51049 1394	162	341	3637	
47	911.54	3728.87	51049	276	340	3623	2.44 b
48	934.54	3822.61	1394	123	246	2570	
49	065 15	2047 41	0025	140	215	2173	2.29 a
50	969 33	3964.45	29181	218	288	3105	2.38 b
51	1078 94	4411.26	890	95	189	1640	
52		4475.02					
				109	219	1890	2.54
53		4542.58		98	198	1738	
54		4582.00		136	239	2336	
55		4723.24		98	195	1688	
56		5062.45		118	235	1853	
57		5098.01		142	306	2557	
58		5237.83		101	209	1787	1.86
59	1378.64	5632.72	1293	107	214	1872	2.15
60	1408.75	5755.41	631	88	176	1424	2.27
61	1460.78	5967.40		106	206	1519	3.70
62	1496.72	6113.86	623	89	183	1224	2.14 a
63		6136.47	171	96	201	1726	
64		6167.08		127	276	2142	1.77 c NET < CL
65		6460.35	789	102	214	1263	2.68 a
66		6489.86		95	148	1009	2.61 b
67		6507.49		93	170	996	
68		6622.29		93	174	1342	2.27
69		6663.28					
70				98	189	1157	2.42 a
		6694.61		92	191	1166	2.18 b
71		7067.12	938	80	157	1008	2.66
72	1/65.52	7208.98	4711	103	162	1076	
73	1848.54	7547.13	526	74	147	954	2.18

RSSI High Resolution Gamma Spectroscopy Analysis

Ouantum Technology

Quantum Technology GDR_C Background Subtract Results

Sample ID : 031227 STS P#1-32193-XC 9D NORTH

Bkg File:h:\gdr\bkg\nocal.bkg | Counting Start. 03-27-03 09:36 ID.: . . . NOCAL 24 Hour Background | Current Date 00-00-00 00:00

PK#	ENERGY (keV)	FWHM (keV)	OLD NET COUNTS	OLD UN- CERTAINTY	NEW NET COUNTS	NEW UN- CERTAINTY	FLAG
====	75.24	2.35	47010	== == ================================	46884	======================================	=======================================
3			47012				
5	85.12	1.73	4581	578	4555	578	
8	93.33	1.72	9639	457	9609	457	
14	186.31	1.96	8327	465	8292	465	
16	238.77	1.97	234551	711	234519	711	
21	295.34	2.05	22846	339	22826	339	
25	352.06	1.90	37544	341	37500	341	
29	510.83	2.09	22258	291	22163	292	
31	583.34	2.02	72205	365	72177	365	
32	609.51	1.94	27591	267	27544	267	
47	911.54	2.44	51049	276	51022	276	
50	969.33	2.38	29181	218	29165	218	
54	1120.83	2.37	5714	136	5695	136	
61	1460.78	3.70	1874	106	1688	106	

5	40	ci

CHAIN OF CUSTODY

Stan A. Huber Consultants, In	ne
200 N. Cedar Rd.	
New Lenox, IL 60451	
(010) 400 4144	

(815) 485-6161 Fax (815) 485-4433 Results Company STS Consultants, Inc.

Name Rich Berggreen

Address 750 Corporate Woods Pkwy.

City Vernon Hills ST IL Zip 60061

Phone (847) 279-2572 Fax (847) 279-2510

Bill To:

Company STS Consultants, Inc.

Rich Berggreen Name

750 Corporate Woods Pkwy. Yernon Hills ST IL Zip 60061 Address

City

Company Client Conta Address City Phone (847)	act <u>Rich Ber</u> 750 Cor <u>Vernon I</u>	porate Wood Hills STIL	ds Pkwy. Zip 60061	P. O. #Project # Project ID:	1-3219		Columbus	NUTRANL	Aualysis (Serves 5	Dydored		
Sample LD, Location	Sample Type	Container Sint	Centainer Type	Container Number	Sampling Date	Sampling Time	Lab I.D.					Comments/Description
90 North	Soil	20 ml 520_/	Plastic Vial	***************************************	3/24/03	1:000			X			QC SPAT Form
91 South	5011	1	ngo selli		3/24/01	1:000			X			9A/9D Enclosed
				·							<u> </u>	Zone Nutral
	·										<u> </u>	50/2: 52479
												53480
						1						
		-	<u> </u>			1	1	T				
			1		1	1						
					Chain-of-	Possession					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

telinquehed By:	Received By:	Date/Time	Relinquished By:	Received By:	Date/Time
Relinquibed By:	Received Byr	Date/Time	Relinquished By:	Received By:	Date/Time
Colinquiped By:	Received By: Rich Bo	726/03 10 50 AVA	Relinquished By:	Regived By:	Date/Time

1

THE
INFRASTRUCTURE
IMPERATIVE

D

APPENDIX D

USEPA Contract Laboratory Analytical Data

USEPA Contract Laboratory Analytical Data is to be provided by the USEPA

(

THE INFRASTRUCTURE IMPERATIVE

E

APPENDIX E

Air Monitoring Results

- a. Perimeter Air Monitoring
- b. Personal Air Monitoring

-

.

——————————————————————————————————————
·- ·
Postura:

a. Perimeter Air Monitoring

Area Air Monitoring Summary Sheet - Weekly Effluent Concentration Report

Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

North Monitor		Week #23 3/10/03-3/14/03			(High Volume)	
	Time Sampled	Effluent Con	centration	Concentration x		
Date	(minutes)	in uCi/ml		Sample Min / Day	Comments	
3/10/2003	0		0.00E+00	0.00E+00	No Area Air Monitoring This Week	
3/11/2003	0		0.00E+00	0.00E+00		
3/12/2003	0		0.00E+00	0.00 E +00		
3/13/2003	0		0.00E+00	0.00E+00		
3/14/2003	0		0.00E+00	0.00E+00		
	0		0.00E+00	0.00E+00		

 $C_{avg} = \Sigma T_{s_1} C_{s_2}$ **Time Weighted Weekly** ΣT_s Effluent Concentration (North) = #DIV/0! uCi/ml Eq A.9 NUREG 1400 Percentage of Release Limit of = #DIV/0! 4E-15uCi/ml

South Monitor

Date	1 '	Effluent Concentration in uCi/ml	Concentration x Sample Min / Day	Comments
3/10/2003	0	0.00E+00	0.00E+00	No Area Air Monitoring This Week
3/11/2003	0	0.00E+00	0.00E+00	
3/12/2003	0	0.00E+00	0.00E+00	•
3/13/2003	0	0.00E+00	0.00E+00	
3/14/2003	0	0.00E+00	0.00E+00	
	0	0.00F+00	0.00E+00	

 $C_{avg} = \Sigma T_{s_{\perp}} C_{i}$ **Time Weighted Weekly** ΣT_s Effluent Concentration (South) = #DIV/0! uCi/ml Percentage of Release Limit of = #DIV/0! Eq A.9 NUREG 1400 4E-15uCi/ml

East Monitor

-	Time Sampled	Effluent Concentration	Concentration x	
Date	(minutes)	in uCi/ml	Sample Min / Day	Comments
3/10/2003	0	0.00E+00	0.00E+00	No Area Air Monitoring This Week
3/11/2003	0	0.00E+00	0.00E+00	
3/12/2003	0	0.00E+00	0.00E+00	
3/13/2003	0	0.00E+00	0.00E+00	
3/14/2003	0	0.00E+00	0.00E+00	
	0	0.00E+00	0.00E+00	

Time Weighted Weekly $C_{avg} = \Sigma T_{s_1} C_i$ ΣT_s Effluent Concentration (East) ≃ #DIV/0! uCi/ml Percentage of Release Limit of = Eq A.9 NUREG 1400 #DIV/0! 4E-15uCi/ml

West Monitor

	Time Sampled	Effluent Concentration	Concentration x	
Date	(minutes)	in uCi/ml	Sample Min / Day	Comments
3/10/2003	0	0.00E+00	0.00E+00	No Area Air Monitoring This Week
3/11/2003	0	0.00E+00	0.00E+00	
3/12/2003	0	0.00E+00	0.00 E +00	
3/13/2003	0	0.00E+00	0.00E+00	
3/14/2003	0	0.00E+00	0.00E+00	
	0	0.00E+00	0.00E+00	

$C_{avg} = \Sigma T_{si} C_{i}$	Time Weighted Weekly	
ΣT_s	Effluent Concentration (West) =	#DIV/0! uCi/ml
Eq A.9 NUREG 1400	Percentage of Release Limit of =	#DIV/0!

Area Air Monitoring Summary Sheet - Staplex High Volume Pumps (Daily Analysis) Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

Week 23

March 10, 2003 - March 14, 2003

				total	cubic	sample		day	after and	alysis			four	day and	alysis	_	% of Limit
Sample	date	start	stop	time	ft/ min	volume	date	gross	bkg	net	Concentration	date	gross	bkg	net	Concentration	4.00E-15
ID .	sampled	time	time	sampled		analyzed	analyzed		counts	cpm	in uCi/ml	analyzed		counts	cpm	in uCi/ml	uCi/ml
	rea Air M	onitorir	ng This	Weel													

Area Air Monitoring Summary Sheet - Weekly Effluent Concentration Report

Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

North Monitor

Week #24 3/17/03-3/21/03

(High Volume)

	Time Sampled	Effluent Concentration	Concentration x	
Date	(minutes)	in uCi/ml	Sample Min / Day	Comments
3/17/2003	0	0.00E+00	0.00E+00	No Area Air Monitoring This Week
3/18/2003	0	0.00E+00	0.00E+00	
3/19/2003	0	0.00E+00	0.00E+00	
3/20/2003	0	0.00E+00	0.00E+00	
3/21/2003	0	_0.00E+00	0.00E+00	
	0	0.00E+00	0.00E+00	

 $C_{avg} = \sum T_{si} C_i$

 ΣT_s

Eq A.9 NUREG 1400

Time Weighted Weekly

Effluent Concentration (North) = #DIV/0! uCi/ml

Percentage of Release Limit of = #DIV/0!

4E-15uCi/ml

South Monitor

	Time Sampled	Effluent Concentration	Concentration x	
Date	(minutes)	in uCi/ml	Sample Min / Day	Comments
3/17/2003	0	0.00E+00	0.00E+00	No Area Air Monitoring This Week
3/18/2003	0	0.00E+00	0.00E+00	
3/19/2003	0	0.00E+00	0.00E+00	
3/20/2003	0	0.00E+00	0.00E+00	
3/21/2003	0	0.00E+00	0.00E+00	
	0	0.00E+00	0.00E+00	

 $C_{avg} = \Sigma T_{si} C_i$

 ΣT_s

Time Weighted Weekly

Effluent Concentration (South) = #DIV/0! uCi/ml

Eq A.9 NUREG 1400

Percentage of Release Limit of = #DIV/0!

4E-15uCi/ml

East Monitor

	Time Sampled	Effluent Concentration	Concentration x	
Date	(minutes)	in uCi/ml	Sample Min / Day	Comments
3/17/2003	0	0.00E+00	0.00E+00	No Area Air Monitoring This Week
3/18/2003	0	0.00E+00	0.00E+00	
3/19/2003	0	0.00E+00	0.00E+00	
3/20/2003	0	0.00E+00	0.00E+00	
3/21/2003	0	0.00E+00	0.00E+00	
	0	0.00E+00	0.00E+00	<u> </u>

 $C_{avg} = \Sigma T_{si} C_{i}$

ΣΤς

Eq A.9 NUREG 1400

Time Weighted Weekly

Effluent Concentration (East) = #DIV/0! uCi/ml

Percentage of Release Limit of = #DIV/0!

4E-15uCi/ml

West Monitor

	Time Sampled	Effluent Concentration	Concentration x	
Date	(minutes)	in uCi/ml	Sample Min / Day	Comments
3/17/2003	0	0.00E+00	0.00E+00	No Area Air Monitoring This Week
3/18/2003	0	0.00E+00	0.00E+00	
3/19/2003	0	0.00E+00	0.00E+00	
3/20/2003	0	0.00E+00	0.00E+00	
3/21/2003	0	0.00 E+0 0	0.00E+00	
	0	0.00E+00	0.00E+00	

$C_{avg} = \Sigma T_{s,i} C_{i}$	Time Weighted Weekly	
ΣT_s	Effluent Concentration (West) =	#DIV/0! uCi/ml
Fa A 9 NUREG 1400	Percentage of Release Limit of =	#DIV/0!

Area Air Monitoring Summary Sheet - Staplex High Volume Pumps (Daily Analysis) Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

Week 24

March 17, 2003 - March 21, 2003

				total	cubic	sample		day	after ana	alysis			four	day and	alysis		% of Limit
Sample	date	start	stop	time	ft/ min	volume	date	gross	bkg	net	Concentration	date	gross	bkg	net	Concentration	4.00E-15
ID	sampled	time	time	sampled	(CFM)	analyzed	analyzed	counts	counts	cpm	in uCi/ml	analyzed	counts	counts	cpm	ín uCi/ml	uCi/ml
No Ar	ea Air M	lonitorii	ng This	s Weel	<												
PAM's	s ONLY																<u>'</u>
Ì																	
												•					
1																	
							† 1										

Area Air Monitoring Summary Sheet - Weekly Effluent Concentration Report

Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

North Monitor	Week #25	3/24/03-3/28/03	(High Volume)
MOLITICAL	**CCN #23	3/24/03-3/20/03	(High volume)

				\tag{\tag{\tag{\tag{\tag{\tag{\tag{		
		Effluent Concentration	•			
Date	(minutes)	in uCi/ml	Sample Min / Day	Comments		
3/24/2003	462	0.00E+00	0.00E+00			
3/25/2003	383	1.71E-15	6.55E-13			
3/26/2003	458	6.46E-16	2,96E-13			
3/27/2003	433	0.00 E +00	0.00E+00			
3/28/2003	399	0.00E+00	0.00E+00	_		
	2135	2.36E-15	9.51E-13			

 $C_{avg} = \underline{\Sigma T_{s,i} C_i}$ ΣT_s

Time Weighted Weekly
Effluent Concentration (North) = 4.45E-16 uCi/ml

Eq A.9 NUREG 1400

Percentage of Release Limit of = 11.13%

4E-15uCi/ml

South Monitor

	Time Sampled	Effluent Concentration	Concentration x	
Date	(minutes)	in uCi/ml	Sample Min / Day	Comments
3/24/2003	472	0.00E+00	0.00E+00	
3/25/2003	383	0.00E+00	0.00E+00	
3/26/2003	458	1.89 E-1 5	8.66E-13	
3/27/2003	433	0.00 E+ 00	0.00E+00	
3/28/2003	394	0.00E+00	0.00E+00	
	2140	1.89 E-1 5	8.66E-13	

 $C_{avg} = \underline{\Sigma} \, \underline{T}_{s,i} \, \underline{C}_{i}$ $\underline{\Sigma} \, \underline{T}_{s}$ Eq A.9 NUREG 1400

Time Weighted Weekly

Effluent Concentration (South) = 4.04E-16 uCi/ml

Percentage of Release Limit of = 10.11%

4E-15uCi/ml

East Monitor

	Time Sampled	Effluent Concentration	Concentration x	
Date	(minutes)	in uCi/ml	Sample Min / Day	Comments
3/24/2003	463	5.82E-16	2.69E-13	
3/25/2003	383	0.00E+00	0.00E+00	
3/26/2003	458	0.00E+00	0.00E+00	
3/27/2003	439	1.73E-15	7.59E-13	
3/28/2003	396	1.49E-15	5.90E-13	
	2139	3.80E-15	1.62E-12	

 $C_{\text{avg}} = \underline{\Sigma \ T_{\text{s.i.}} C_{\text{i.}}}$ $\Sigma \ T_{\text{s.}}$

Time Weighted Weekly

Effluent Concentration (East) = 7.57E-16 uCi/ml

Eq A.9 NUREG 1400

Percentage of Release Limit of = 4E-15uCi/ml

18.92%

West Monitor

	Time Sampled	Effluent Concentration	Concentration x	
Date	(minutes)	in uCi/ml	Sample Min / Day	Comments
3/24/2003	464	1.05E-15	4.87E-13	
3/25/2003	380	2.13E-15	8.09E-13	
3/26/2003	460	0.00E+00	0.00E+00	
3/27/2003	436	0.00 E +00	0.00E+00	
3/28/2003	399	8.00E-16	3.19E-13	
	2139	3.98E-15	1.62E-12	

 $C_{\text{avg}} = \underline{\Sigma \, T_{\text{s.i.}} \, C_{\text{i.}}}$ $\Sigma \, T_{\text{s.}}$ $\Sigma \, T_{\text{s.}}$

Time Weighted Weekly

Effluent Concentration (West) = 7.55E-16 uCi/ml

Percentage of Release Limit of = 18.88%

Eq A.9 NUREG 1400

Area Air Monitoring Summary Sheet - Staplex High Volume Pumps (Daily Analysis) Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

Week 25

March 24, 2003 - March 28, 2003

1	_			total	cubic	sample		day	after an	alysis			four	day and	alysis		% of Limit
Sample	date	start	stop	time	ft/ min	volume	date	gross	bkg	net	Concentration	date	gross	bkg	net	Concentration	4.00E-15
ID.	sampled	time	time	sampled	(CFM)	analyzed	anatyzed	counts	counts	cpm	in uCi/ml	analyzed	counts	counts	cpm	in uCi/ml	uCi/ml
N2042	3/24/2003	7:53am	3:35pm	462	35	1.60E+07	3/25/2003	128	12	3.86667	8.70E-14	3/28/2003	12	13	0	0.00E+00	0.00%
S2042	3/24/2003	7:47am	3:39pm	472	47	2.20E+07	3/25/2003	103	12	3.03333	4.97E-14	3/28/2003	12	13	0	0.00E+00	0.00%
E2042	3/24/2003	7:52am	3:35pm	463	45	2.06E+07	3/25/2003	139	12	4.23333	7.39E-14	3/28/2003	14	13	0.033	5.82E-16	
W2042	3/24/2003	7:55am	3:39pm	464	50	2.30E+07	3/25/2003	148	12	4.53333	7.11E-14	3/28/2003	15	13	0.067	1.05E-15	26.13%
N2043	3/25/2003	7:38am	2:01pm	383	37	1.40E+07	3/26/2003	44	13	1.03333	2.65E-14	3/31/2003	14	12	0.067	1.71E-15	42.78%
S2043	3/25/2003	7:42am	2:05pm	383	50	1.90E+07	3/26/2003	71	13	1.93333	3.67E-14	3/31/2003	11	12	0	0.00E+00	0.00%
E2043	3/25/2003	7:44am	2:07pm	383	30	1.14E+07	3/26/2003	48	13	1.16667	3.69E-14	3/31/2003	12	12	0	0.00E+00	0.00%
W2043	3/25/2003	7:40am	2:00pm	380	45	1.69E+07	3/26/2003	54	13	1.36667	2.91E-14	3/31/2003	15	12	0.1	2.13E-15	53.18%
N2044	3/26/2003	7:40am	3:18pm	458	41	1.86E+07	3/27/2003	58	11	1.56667	3.03E-14	3/31/2003	13	12	0.033	6.46E-16	16.14%
S2044	3/26/2003	7:37am	3:15pm	458	42	1.91E+07	3/27/2003	103	11	3.06667	5.80E-14	3/31/2003	15	12	0.1	1.89E-15	47.28%
E2044	3/26/2003	7:42am	3:20pm	458	40	1.82E+07	3/27/2003	86	11	2.5	4.96E-14	3/31/2003	10	12	0	0.00E+00	0.00%
W2044	3/26/2003	7:35am	3:15pm	460	44	2.01E+07	3/27/2003	89	11	2.6	4.67E-14	3/31/2003	12	12	0	0.00E+00	0.00%
N2045	3/27/2003	7:54am	3:07pm	433	35	1.50E+07	3/28/2003	64	13	1.7	4.08E-14	4/1/2003	10	12	0	0.00E+00	0.00%
S2045	3/27/2003	7:57am	3:10pm	433	42	1.80E+07	3/28/2003	97	13	2.8	5.60E-14	4/1/2003	11	12	0	0.00E+00	0.00%
E2045	3/27/2003	7:50am	3:09pm	439	32	1.39E+07	3/28/2003	66	13	1.76667	4.57E-14	4/1/2003	14	12	0.067	1.73E-15	43.16%
W2045	3/27/2003	7:55am	3:11pm	436	37	1.60E+07	3/28/2003	133	13	4	9.02E-14	4/1/2003	12	12	0	0.00E+00	0.00%
N2046	3/28/2003	7:56am	2:35pm	399	37	1.46E+07	3/31/2003	14	12	0.06667	1.64E-15	4/2/2003	11	11	0	0.00E+00	0.00%
S2046	3/28/2003	8:04am	2:38pm	394	42	1.64E+07	3/31/2003	18	12	0.2	4.40E-15	4/2/2003	10	11	0	0.00E+00	0.00%
E2046	3/28/2003	7:59am	2:35pm	396	41	1.61E+07	3/31/2003	17	12	0.16667	3.73E-15	4/2/2003	13	11	0.067	1.49E-15	37.34%
W2046	3/28/2003	8:01am	2:40pm	399	38	1.50E+07	3/31/2003	13	12	0.03333	8.00E-16	4/2/2003	12	11	0.033	8.00E-16	19.99%

Area Air Monitoring Summary Sheet - Weekly Effluent Concentration Report

Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

North Monitor

Week #26 3/31/03-4/4/03

(High Volume)

	Time Sampled	Effluent Concentration	Concentration x	
Date	(minutes)	in uCi/ml	Sample Min / Day	Comments
3/31/2003	459	6.44E-16	2.96E-13	
4/1/2003	422	0.00E+00	0.00E+00	
4/2/2003	427	6.04 E- 16	2.58E-13	
4/3/2003	406	2.30E-15	9.34E-13	
4/4/2003	0	0.00E+00	0.00E+00	No Field Work on 4/4/03 - Rained Out
	4744	2 555 45	4.405.40	

1714

3.55E-15

1.49E-12

 $C_{avg} = \Sigma T_{si} C_{i}$ ΣT_s

Time Weighted Weekly Effluent Concentration (North) =

8.68E-16 uCi/ml

Eq A.9 NUREG 1400

Percentage of Release Limit of =

21.69%

4E-15uCi/ml

South Monitor

	Time Sampled	Effluent Concentration	Concentration x	
Date	(minutes)	in uCi/ml	Sample Min / Day	Comments
3/31/2003	459	0.00E+00	0.00E+00	
4/1/2003	422	1.34E-15	5.65E-13	
4/2/2003	427	0.00E+00	0.00E+00	
4/3/2003	408	0.00E+00	0.00E+00	
4/4/2003	0	0.00E+00	0.00E+00	No Field Work on 4/4/03 - Rained Out
	1716	1.34E-15	5.65E-13	

 $C_{avg} = \Sigma T_{s_1} C_1$

ΣΤς

Time Weighted Weekly Effluent Concentration (South) =

3.30E-16 uCi/ml

Eq A.9 NUREG 1400

Percentage of Release Limit of =

8.24%

4E-15uCi/ml

East Monitor

Last mom	107			
	Time Sampled	Effluent Concentration	Concentration x	
Date	(minutes)	in uCi/ml	Sample Min / Day	Comments
3/31/2003	455	0.00E+00	0.00E+00	
4/1/2003	420	6.71E-16	2.82E-13	
4/2/2003	429	7.44E-16	3.19E-13	
4/3/2003	415	6.22E-16	2.58E-13	
4/4/2003	0	0.00E+00	0.00E+00	No Field Work on 4/4/03 - Rained Out
	1719	2.04E-15	8.59E-13	

 $C_{avq} = \Sigma T_{s_1} C_{s_2}$

Time Weighted Weekly

Effluent Concentration (East) =

5.00E-16 uCi/ml

Eq A.9 NUREG 1400

Percentage of Release Limit of =

12.49%

4E-15uCi/ml

West Monitor

	Time Sampled	Effluent Concentration	Concentration x	
Date	(minutes)	in uCi/ml	Sample Min / Day	Comments
3/31/2003	455	0.00E+00	0.00E+00	
4/1/2003	420	0.00E+00	0.00E+00	
4/2/2003	434	0.00 E +00	0.00E+00	
4/3/2003	410	0.00E+00	0.00E+00	
4/4/2003	0	0.00E+00	0.00E+00	No Field Work on 4/4/03 - Rained Out
·	1719	0.00E+00	0.00E+00	

 $C_{avg} = \underline{\sum T_{s,i} C_{i}}$ $\underline{\sum T_{s}}$

Time Weighted Weekly
Effluent Concentration (West) = 0.00E+00 uCi/ml

Eq A.9 NUREG 1400

Percentage of Release Limit of = 0.00%

Area Air Monitoring Summary Sheet - Staplex High Volume Pumps (Daily Analysis) Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

Week 26

March 31, 2003 - April 4, 2003

				total	cubic	sample		day	after an	alysis			four	day and	alysis		% of Limit
Sample	date	start	stop	time .	ft/ min	volume	date	grass	bkg	net	Concentration	date	gross	bkg	net	Concentration	4.00E-15
ID	sampled	time	time	sampled	(CFM)	analyzed	analyzed	counts	counts	cpm	in uCi/ml	analyzed	counts	counts	cpm	in uCi/ml	uCi/ml
N2047	3/31/2003	8:09am	3:48pm	459	41	1.87E+07	4/1/2003	58	12	1.53333	2.96E-14	4/4/2003	13	12	0.033	6.44E-16	16.11%
S2047	3/31/2003	8:16am	3:55pm	459	45	2.05E+07	4/1/2003	64	12	1.73333	3.05E-14	4/4/2003	12	12	0	0.00 E+0 0	0.00%
E2047	3/31/2003	8:10am	3:45pm	455	47	2.12E+07	4/1/2003	71	12	1.96667	3.35E-14	4/4/2003	10	12	0	0.00E+00	0.00%
W2047	3/31/2003	8:15am	3:50pm	455	52	2.34E+07	4/1/2003	66	12	1.8	2.77E-14	4/4/2003	12	12	0	0.00E+00	0.00%
N2048	4/1/2003	8:25am	3:27pm	422	47	1.97E+07	4/2/2003	481	11	15.6667	2.87E-13	4/7/2003	10	12	0	0.00E+00	0.00%
S2048	4/1/2003	8:23am	3:25pm	422	43	1.80E+07	4/2/2003	426	11	13.8333	2.77E-13	4/7/2003	14	12	0.067	1.34E-15	33.41%
E2048	4/1/2003	8:25am	3:25pm	420	43	1.79E+07	4/2/2003	439	11	14.2667	2.87E-13	4/7/2003	13	12	0.033	6.71E-16	16.78%
W2048	4/1/2003	8:21am	3:21pm	420	42	1.75E+07	4/2/2003	455	11	14.8	3.05E-13	4/7/2003	11	12	0	0.00E+00	0.00%
N2049	4/2/2003	8:18am	3:25pm	427	47	1.99E+07	4/3/2003	58	10	1.6	2.90E-14	4/7/1930	13	12	0.033	6.04E-16	15.10%
S2049	4/2/2003	8:21am	3:28pm	427	42	1.78E+07	4/3/2003	61	10	1.7	3.45E-14	4/7/2003	10	12	0	0.00E+00	0.00%
E2049	4/2/2003	8:20am	3:29pm	429	38	1.62E+07	4/3/2003	67	10	1.9	4.24E-14	4/7/2003	13	12	0.033	7.44E-16	1
W2049	4/2/2003	8:17am	3:31pm	434	41	1.76E+07	4/3/2003	50	10	1.33333	2.73E-14	4/7/2003	12	12	0	0.00E+00	0.00%
N2050	4/3/2003	8:42am	3:38pm	406	39	1.57E+07	4/4/2003	70	12	1.93333	4.44E-14	4/10/2003	16	13	0.1	2.30E-15	
S2050	4/3/2003	8:34am	3:22pm	408	45	1.82E+07	4/4/2003	112	12	3.33333	6.60E-14	4/10/2003	13	13	0	0.00E+00	0.00%
E2050	4/3/2003	8:36am	3:31pm	415	47	1.93E+07	4/4/2003	158	12	4.86667	9.08E-14	4/10/2003	14	13	0.033	6.22E-16	15.54%
W2050	4/3/2003	8:40am	3:30pm	410	47	1.91E+07	4/4/2003	131	12	3.96667	7.49E-14	4/10/2003	11	13	0	0.00 E+ 00	0.00%
No Field	Work on 4/4	//03 - Rair	ned Out														

^{* 4} day analysis of air samples collected on 4/3/03 (2050) were not analyzed until 4/10/03 because we did not work on 4/8/03 and 4/9/03

Area Air Monitoring Summary Sheet - Weekly Effluent Concentration Report

Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

North Monitor	Week #27	4/7/03-4/11/03	(High Volume)

	Time Sampled	Effluent Concentration	Concentration x	
Date	(minutes)	in uCi/ml	Sample Min / Day	Comments
4/7/2003	0	0.00E+00	0.00E+00	
4/8/2003	0	0.00E+00	0.00E+00	
4/9/2003	0	0.00 E+0 0	0.00E+00	
4/10/2003	404	0.00E+00	0.00E+00	
4/11/2003	0	0.00E+00	0.00E+00	
	404	0.00 E+0 0	0.00E+00	

 $C_{avg} = \Sigma T_{s,i} C_i$ Time Weighted Weekly ΣT_s Effluent Concentration (North) = 0.00E+00 uCi/ml $Eq A.9 \ NUREG \ 1400$ Percentage of Release Limit of = 0.00%

4E-15uCi/ml

South Monitor

Date		Effluent Concentration in uCi/ml	Concentration x Sample Min / Day	Comments
4/7/2003	0	0.00E+00	0.00E+00	
4/8/2003	0	0.00E+00	0.00E+00	
4/9/2003	0	0.00E+00	0.00E+00	
4/10/2003	0	0.00E+00	0.00E+00	No sample collected today-equipment
4/11/2003	0	0.00E+00	0.00E+00	
	0	0.00E+00	0.00E+00	

 $C_{avg} = \Sigma T_{s,} C_{i}$ Time Weighted Weekly ΣT_{s} Effluent Concentration (South) = #DIV/0! uCi/ml $Eq A.9 \ NUREG \ 1400$ Percentage of Release Limit of = #DIV/0! 4E-15uCi/ml

East Monitor

	Time Sampled	Effluent Concentration	Concentration x	
Date	(minutes)	in uCi/ml	Sample Min / Day	Comments
4/7/2003	0	0.00E+00	0.00E+00	
4/8/2003	0	0.00E+00	0.00E+00	
4/9/2003	0	0.00E+00	0.00E+00	
4/10/2003	406	0.00E+00	0.00E+00	
4/11/2003	0	0.00E+00	0.00E+00	
	406	0.00E+00	0.00E+00	

$C_{avg} = \Sigma T_{si} C_i$	Time Weighted Weekly	
ΣT_s	Effluent Concentration (East) =	0.00E+00 uCi/ml
Eq A.9 NUREG 1400	Percentage of Release Limit of = 4E-15uCi/ml	0.00%

West Monitor

	Time Sampled	Effluent Concentration	Concentration x	
Date	(minutes)	in uCi/ml	Sample Mi <u>n /</u> Day	Comments
4/7/2003	0	0.00E+00	0.00E+00	
4/8/2003	0	0.00E+00	0.00E+00	
4/9/2003	0	0.00 E +00	0.00E+00	
4/10/2003	406	0.00E+00	0.00E+00	
4/11/2003	0	0.00E+00	0.00E+00	
	406	0.00E+00	0.005+00	

 $C_{avg} = \underline{\Sigma T_s, C_s}$ ΣT_s

Time Weighted Weekly

Effluent Concentration (West) = 0.00E+00 uCi/ml

Eq A.9 NUREG 1400

Percentage of Release Limit of =

0.00%

Area Air Monitoring Summary Sheet - Staplex High Volume Pumps (Daily Analysis) Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

Week 27

April 7, 2003 - April 11, 2003

				total	cubic	sample	day after analysis					four	day ana	lysis		% of Limit	
Sample	date	start	stop	time	ft/ min	volume	date	gross	bkg	net	Concentration	date	gross	bkg	net	Concentration	4.00E-15
ID	sampled	time	time	sampled	(CFM)	analyzed	analyzed	counts	counts	cpm	in uCi/ml	analyzed	counts	counts	cpm	in uCi/ml	uCi/ml
N2051	4/10/2003	8:04am	2:48pm	404	48	1.92E+07	4/11/2003	21	11	0.33333	6.25E-15	4/15/2003	11	13	0	0.00E+00	0.00%
S2051	4/10/2003	No sampl	e collected	- see not	e below												0.00%
E2051	4/10/2003	8:04am	2:50pm	406	52	2.09E+07	4/11/2003	23	11	0.4	6.89E-15	4/15/2003	13	13	0	0.00E+00	0.00%
W2051	4/10/2003	8:02am	2:48pm	406	38	1.53E+07	4/11/2003	18	11	0.23333	5.50E-15	4/15/2003	10	13	0	0.00E+00	0.00%
when tho	April 10 was rium contam ed. No South ay, because i	inated main Monitor s	terial was e sample was	excavated s taken													

Area Air Monitoring Summary Sheet - Weekly Effluent Concentration Report

Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

0

North Mor	itor	Week #28 6/16/03 - 6/	20/03	(High Volume)					
Date	,	Effluent Concentration in uCi/ml	Concentration x Sample Min / Day	Comments					
6/16/03	0	0.00E+00	0.00E+00						
6/17/03	0	0.00E+00	0.00E+00						
6/18/03	291	9.47E-16	2.76E-13						
6/19/03	265	0.00E+00	0.00E+001						

0.00E+00 0.00E+00 556 9.47E-16 2.76E-13

 $C_{\text{avg}} = \underline{\sum T_{s,i} C_i}$

6/20/03

 ΣT_{6}

Time Weighted Weekly

Effluent Concentration (North) = 4.96E-16 uCi/ml

Eq A.9 NUREG 1400

Percentage of Release Limit of =

12.39%

4E-15uCi/ml

South Monitor

	Time Sampled	Effluent Concentration	Concentration x	
Date	(minutes)	in uCi/ml	Sample Min / Day	Comments
6/16/03	0	0.00E+00	0.00E+00	
6/17/03	0	0.00E+00	0.00E+00	
6/18/03	310	0.00E+00	0.00E+00	
6/19/03	262	0.00E+00	0.00E+00	
6/20/03	0	0.00E+00	0.00E+00	
	572	0.00E+00	0.00E+00	

 $C_{\text{avg}} = \Sigma T_{\text{s.i.}} C_{\text{i}}$

ΣΤ.

Time Weighted Weekly

Effluent Concentration (South) =

0.00E+00 uCi/ml

Eq A.9 NUREG 1400

Percentage of Release Limit of =

0.00%

4E-15uCi/ml

East Monitor

	Time Sampled	Effluent Concentration	Concentration x	
Date	(minutes)	in uCi/ml	Sample Min / Day	Comments
6/16/03	0	0.00E+00	0.00E+00	
6/17/03	0	0.00E+00	0.00E+00	
6/18/03	300	0.00E+00	0.00E+00	
6/19/03	268	0.00E+00	0.00E+00	
6/20/03	0	0.00E+00	0.00E+00	
	568	0.005+00	0.00E+00	

 $C_{avq} = \sum T_{e,i} C_{i}$

Eq A.9 NUREG 1400

 ΣT_s

Percentage of Release Limit of =

Time Weighted Weekly

Effluent Concentration (East) =

0.00E+00 uCi/ml

0.00%

4E-15uCi/ml

West Monitor

Date		Effluent Concentration In uCl/ml	Concentration x Sample Min / Day	Comments
6/16/03	0	0.00E+00	0.00E+00	
6/17/03	0	0.00E+00	0.00E+00	
6/18/03	307	0.00E+00	0.00E+00	
6/19/03	263	0.00E+00	0.00E+00	
6/20/03	0	0.00E+00	0.00E+00	
·····	570	0.00E+00	0.00E+00	

$C_{\text{evg}} = \underline{\Sigma} \underline{T}_{\text{e,i}} \underline{C}_{i}$	Time Weighted Weekly	
$\Sigma T_{\mathbf{e}}$	Effluent Concentration (West) =	0.00E+00 uCi/m1
Eq A.9 NUREG 1400	Percentage of Release Limit of =	0.00%

Note: This is the first week of onsite soil excavation since April 11, 2003. Radiation monitoring of construction activities inside slip areas started on 6/16/03.

Area Air Monitoring Summary Sheet - Staplex High Volume Pumps (Daily Analysis)

Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

Week 28

June 16, 2003 - June 20, 2003

				total	cubic	sample		day	after a	nalysis			fou	% of Limit			
Sample	date	start	stop	time	ft/ min	volume	date	gross	bkg	net	Concentration	date	gross	bkg	net	Concentration	4.00E-15
ID D	sampled	time	time	sampled	(CFM)	analyzed	analyzed	counts	counts	cpm	in uCi/mi	analyzed	counts	counts	cpm	in uCi/mi	uCi/mi
N2052	6/18/03	8:47am	1:38pm	291	44	1.27E+07	6/19/03	80	12	2.26667	6.44E-14	6/23/03	14	13	0.033	9.47E-16	23.67%
S2052	6/18/03	8:40am	1:50pm	310	48	1.47E+07	6/19/03	73	12	2.03333	4.97E-14	6/23/03	11	13	0	0.00E+00	0.00%
E2052	6/18/03	8:50am	1:50pm	300	44	1.31E+07	6/19/03	58	12	1.53333	4.23E-14	6/23/03	13	13	0	0.00E+00	0.00%
W2052	6/18/03	8:38am	1:45pm	307	45	1.37E+07	6/19/03	79	12	2.23333	5.88E-14	6/23/03	12	13	0	0.00E+00	0.00%
N2053	6/19/03	9:14am	1:39pm	265	45	1.18E+07	6/20/03	49	11	1.26667	3.86E-14	6/24/03	11	13	0	0.00E+00	0.00%
S2053	6/19/03	9:10am	1:32pm	262	45	1.17E+07	6/20/03	58	11	1.56667	4.83E-14	6/24/03	13	13	0	0.00E+00	0.00%
E2053	6/19/03	9:12am	1:40pm	268	42	1.12E+07	6/20/03	36	11	0.83333	2.69E-14	6/24/03	12	13	0	0.00E+00	0.00%
W2053	6/19/03	9:07am	1:30pm	263	46	1.20E+07	6/20/03	40	11	0.96667	2.91E-14	6/24/03	12	13	0	0.00E+00	0.00%
Note: There has been no onsite excavation of soil since April 11, 2003. Radiation monitoring of construction activities started on June 16, 2003. Wednesday 6/18/03 and Thursday 6/19/03 were the only days during this week when thorium contaminated material was excavated and loaded. Air Monitoring not required on other work days																	

Area Air Monitoring Summary Sheet - Weekly Effluent Concentration Report

Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

North Monitor		Week #29 6/23/03 - 6/2	41103	(High Volume)
	Time Sampled	Effluent Concentration	Concentration x	
Date	(minutes)	in uCi/mi	Sample Min / Day	Comments
6/23/03	0	0.00E+00	0.00E+00	
6/24/03	0	0.00E+00	0.00E+00	
6/25/03	0	0.00E+00	0.00E+00	
6/26/03	152	0.00E+00	0.00E+00	
6/27/03	127	0.00E+00	0.00E+00	
	279	0.00E+00	0,00E+00	

 $C_{\text{avg}} = \sum T_{\text{s,l}} C_{\text{l}}$ $\sum T_{\text{s}}$ Eq A.9 NUREG 1400

Time Weighted Weekly

Effluent Concentration (North) = 0.00E+00 uCi/ml

Percentage of Release Limit of = 0.00%

4E-15uCi/ml

South Monitor

	Time Sampled	Effluent Concentration	Concentration x	
Date	(minutes)	in uCi/ml	Sample Min / Day	Comments
6/23/03	0	0.00E+00	0.00E+00	
6/24/03	0	0.00E+00	0.00E+00	
6/25/03	0	0.00E+00	0.00E+00	
6/26/03	146	0.00E+00	0.00E+00	
6/27/03	131	1.97E-15	2.58E-13	
	277	1.97E-15	2.58E-13	

 $C_{\text{avg}} = \sum T_{\text{s,i}} C_{\text{i}}$ Time Weighted Weekly $\sum T_{\text{s}}$ Effluent Concentration (South) = 9.32E-16 uCi/ml

Eq A.9 NUREG 1400 Percentage of Release Limit of = 23.29% 4E-15uCi/ml

East Monitor

	Time Sampled	Effluent Concentration	Concentration x	
Date	(minutes)	in uCi/ml	Sample Min / Day	Comments
6/23/03	0	0.00E+00	0.00E+00	
6/24/03	0	0.00E+00	0,00E+00	
6/25/03	0	0.00E+00	0.00E+00	
6/26/03	144	1.75E-15	2.52E-13	
6/27/03	123	0.00E+00	0.00E+00	
	267	1.75E-15	2.52E-13	

 $C_{\text{avg}} = \sum T_{c,i} C_i$ Time Weighted Weekly $\sum T_s$ Effluent Concentration (East) = 9.44E-16 uCi/ml

Percentage of Release Limit of = 23.60% 4E-15uCi/ml

West Monitor

Date		Effluent Concentration in uCl/ml	Concentration x Sample Min / Day	Comments
8/23/03	0	0.00E+00	0.00E+00	
6/24/03	0	0.00E+00	0.00E+00	
6/25/03	0	0.00E+00	0.00E+00	
6/26/03	150	9.00E+00	0.00 E+ 00	
6/27/03	122	0.00E+00	0.00E+00	
	272	0.00E+00	0.00F+00	

$C_{avg} = \Sigma T_{s,i} C_i$
ΣT_s
Eq A.9 NUREG 1400

Time Weighted Weekly	
Effluent Concentration (West) =	0.00E+00 uCi/ml
Percentage of Release Limit of =	0.00%

Area Air Monitoring Summary Sheet - Staplex High Volume Pumps (Daily Analysis)

Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

Week 29

June 23, 2003 - June 27, 2003

				total	cubic	sample		day	after a	nalysis			fou	ır day a	naiysis		% of Limit
Sample	date	start	stop	time	ft/ min	volume	date	gross	bkg	net	Concentration	date	gross	bkg	net	Concentration	4.00E-15
10	sampled	time	time	sampled	(CFM)	analyzed	analyzed	counts	counts	срт	in uCi/mi	analyzed	counts	counts	срт	in uCI/mi	uCi/ml
N2054	6/26/03	1:04pm	3:36pm	152	50	7.53E+06	6/27/03	23	11	0.4	1.91E-14	7/1/03	10	12	0	0.00E+00	0.00%
S2054	6/26/03	1:10pm	3:36pm	146	49	7.09E+06	6/27/03	20	11	0.3	1.53E-14	7/1/03	12	12	0	0.00E+00	0.00%
E2054	6/26/03	1:08pm	3:32pm	144	48	6.85E+06	6/27/03	26	11	0.5	2.63E-14	7/1/03	13	12	0.033	1.75E-15	43.86%
W2054	6/26/03	1:08pm	3:38pm	150	54	8.03E+06	6/27/03	18	11	0.23333	1.05E-14	7/1/03	9	12	0	0.00E+00	0.00%
N2055	6/27/03	12:12pm	2:19pm	127	46	5.79E+06	6/30/03	16	13	0.1	6.23E-15	7/2/03	10	12	0	0.00E+00	0.00%
S2055	6/27/03	12:10pm	2:21pm	131	47	6.10E+06	6/30/03	20	13	0.23333	1.38E-14	7/2/03	13	12	0.033	1.97E-15	49.23%
E2055	6/27/03	12:17pm	2:20pm	123	52	6.34E+06	6/30/03	17	13	0.13333	7.58E-15	7/2/03	12	12	0	0.00E+00	0.00%
W2055	6/27/03	12:15pm	2:17pm	122	51	6.17E+06	6/30/03	14	13	0.03333	1.95E-15	7/2/03	12	12	0	0.00E+00	0.00%
Thursday 6/26/03 and Friday 6/27/03 were the only days during this week when thorium contaminated material was excavated and loaded. Air Monitoring																	
1 .		er work da							<u></u> -					=:=:			

Area Air Monitoring Summary Sheet - Weekly Effluent Concentration Report

Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

North Mor	******	Week #30 6/30/03 - 7/		(High Volume)
Date	(minutes)	Effluent Concentration in uCI/ml	Concentration x Sample Min / Day	Comments
6/30/03	211	0.00E+00	0.00E+00	
7/1/03	299	1.89≝-15	5.65E-13	
7/2/03	328	0.00 E+ 00	0.00E+00	
7/3/03	0	0.00 E+0 0		
7/4/03	0	0.00€+00		
	836	1.89E-15	5.65E-13	

Con = E Tal C

Time Weighted Weekly

ΣT.

Effluent Concentration (North) = 6.76E-16 uCi/mi

Eq A.O NUREG 1400

Percentage of Release Limit of = 16.90%

4E-15uCUmi

South Monitor

	Time Sampled	Effluent Concentration	Concentration x	
		In uCVmI	Sample Min / Day	Comments
6/30/03	212	0.00E+00	0.00E+00	
7/1/03	302	0.00 E +00	0.00E+00	
7/2/03	329	1.84E-15	6.05E-13	
7/3/03	O	0.00E+00	0.00€+00	
7/4/03	0	0.00E+00	0.00€+00	
	843	1 84F-15	8.05F-13	

Com = EILC

Time Weighted Weekty

ΣT.

Effluent Concentration (South) = 7.18E-16 uCi/mi

Eq A.9 NUREG 1400

Percentage of Release Limit of * 17.95%

4E-15uCi/mi

Fact Monitor

	Time Sampled	Effluent Concentration	Concentration x					
Date	(minutes)	in uCi/ml	Sample Min / Day	Comments				
6/30/03	208	1.19E-15	2.48E-13					
7/1/03	279	0.00E+00	0,00E+00					
7/2/03	322	0,00E+00	0,00E+00					
7/3/03	0	0.00E+00	0.00E+00					
7/4/03	0	0.00€+00	0.00E+00					
	809	1.195-15	2.48F-13					

Com = E Tai Ci

Time Weighted Weekly

ΣT.

Effluent Concentration (East) =

3.06E-16 uCI/ml

Eq A.9 NUREG 1400

Percentage of Release Limit of =

7.85%

4E-15uCi/ml

West Monitor

	Time Sampled	Effluent Concentration	Concentration x	
Date	(minutes)		Sample Min / Day	Comments
6/30/03	206	0.00E+00	0.00E+00	
7/1/03	295	0.005+00	0.00€+00	
7/2/03	320	8.24E-16	2.64E-13	
7/3/03	0	0.00E+00	0.00E+00	
7/4/03	0	0.00€+00	0.00E+00	
	821	8.24E-16	2.64E-13	

 $C_{\text{evg}} \neq \underline{\Sigma T_{\text{s,i}} C_{\text{i}}}$ $\underline{\Sigma T_{\text{e}}}$ Eq.A.9 NUREG 1400

Time Weighted Weekly	
Effluent Concentration (West) =	3.21E-16 µCi/ml
Percentage of Release Limit of =	8.03%

Area Air Monitoring Summary Sheet - Staplex High Volume Pumps (Daily Analysis) Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

Week 30	June 30, 2003 - July 4, 20	03
434016 00	Antia aal wasaa aasil al ma	

				total-	Cubic	pemple		day	after s	nalysis			fot	r day a	nalyele		%of Link
Sample	dele	atect	etop	time	fit min	volume	date	gross	bkg	net	Concentration	deta	gross	blec	Del	Cencerisation	4.00E-15
iD .	beignes	time	time	sampled	(CFM)	annilyzed	anniy/zed	etruco	counts	com	in uClimi	analyzad	counte	counts	opm	in ucilimi	uClimi
N2058	6/30/03	9:51am	1:22pm	211	50	1.05E+07	7/1/03	18	12	0.2	6.90E-15	7/7/03	11	13	0	0.00E+00	0.00%
S2056	6/30/03	9:55em	1:27pm	212	52	1.09E+07	7/1/03	29	12	0.56867	1.87E-14	7/7/03	12	13	0	0.00E+00	0.00%
E2056	6/30/03	9:52mm	1:20pm	208	49	1.01E+07	7/1/03	27	12	0.5	1.78E-14	7,17/03	14	13	0.033	1.19E-15	
W2056	6/30/03	9:58am	1:24pm	208	49	1.00E+07	7/1/03	21	12	0.3	1.08E-14	7/7/03	13	13	0	0.00 E+0 0	
N2067	7/1/03	8:07am	1:06pm	299	43	1.27E+07	7/2/03	74	12	2.06687	5.85E-14	7/7/03	15	13	0.067	1. 69E-15	47.15%
S2057	7/1/03	8:02am	1:04pm	302	45	1.35E+07	7/2/03	58	12	1.53333	4.10E-14	7/7/03	13	13	0	0.00E+90	
E2057	7/1/03	6;11am	12:50pm	279	41	1.13E+07	7/2/03	42	12	1	3.18E-14	7/7/03	11	13	9	0.00E+00	0.00%
W2057	7/1/03	8:07em	1:02pm	295	45	1.32E+07	7/2/03	53	12	1.36667	3.74E-14	7/7/03	13	13	q	0.00E+00	0.00%
N2058	7/2/03	7:59em	1:25pm	326	42	1.36E+07	7/3/03	44	13	1,03333	2.75E-14	7/7/03	12	13	. 0	0.90E+00	
\$2058	7/2/03	7:58am	1:27pm	329	40	1.30E+07	7/3/03	22	13	0.3	8.29E-15	7/7/03	15	13	0.067	1.84E-15	48.07%
£2058	7/2/03	8:00em	1:22pm	322	42	1.34E+07	7/3/03	29	13	0.53333	1.43E-14	7/7/03	12	13	8	0.00E+00	0.00%
W2058	7/2/03	8:04em	1:24pm	320	46	1.46E+07	7/3/03	34	13	0.7	1.73E-14	7/7/03	14	13	0.033	8.24E-10	20.59%
Monday 6/30/03 through Wednesday 7/2/03 were the only days during this week when thorium contaminated material was excavated and loaded. Air Monitoring not required on other work days										_			ples were 4th of July				

Area Air Monitoring Summary Sheet - Weekly Effluent Concentration Report

Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

North Moi	nitor	Report #31 8/18/03 - 8	8/22/03	(High Volume)
	Time Sampled	Effluent Concentration	Concentration x	
Date	(minutes)	in uCi/ml	Sample Min / Day	Comments
8/18/03	0	0.00E+00	0.00E+00	
8/19/03	0	0.00E+00	0.00E+00	
8/20/03	355	0.00E+00	0.80E+00	
8/21/03	428	6.30E-16	2.70E-13	
8/22/03	304	0.00E+00	0.00E+00	
,	1087	6.30E-16	2.70E-13	

 $C_{\text{avg}} = \underline{\Sigma T_{s_1} C_i}$ ΣT_{s_1}

Time Weighted Weekly
Effluent Concentration (North) = 2.48E-16 uCi/ml

Eq A.9 NUREG 1400

Percentage of Release Limit of = 6.20%

4E-15uCi/ml

South Monitor

7	1-:			
ļ	Time Sampled	Effluent Concentration	Concentration x	
Date	(minutes)	in uCi/ml	Sample Min / Day	Comments
8/18/03	Ó	0.00E+00	0.00E+00	
8/19/03	0	0.00E+00	0.00E+00	
8/20/03	369	1.40E-15	5.17E-13	
8/21/03	444	0.00E+00	0.00E+00	
8/22/03	295	9.56E-16	2.82E-13	
	1108	2.36E-15	7.99E-13	

 $C_{evg} = \underline{\Sigma T_{e,i} C_i}$ ΣT_e

Time Weighted Weekly

Effluent Concentration (South) = 7.21E-16 uCi/ml

Eq A.9 NUREG 1400

Percentage of Release Limit of = 18.02%

4E-15uCi/ml

East Monitor

East Monit	.41			
	Time Sampled	Effluent Concentration	Concentration x	
Date	(minutes)	in uCi/ml	Sample Min / Day	Comments
8/18/03	Ó	0.00E+00	0.00E+00	
8/19/03	0	0.00E+00	0.00E+00	
8/20/03	342	0.00E+00	0.00E+00	
8/21/03	429	0.00E+00	0.00E+00	
8/22/03	305	0.00E+00	0.00E+00	
	1076	0.00E+00	0.00E+00	

 $C_{\text{avg}} = \sum T_{s,i} C_{i}$

Time Weighted Weekly

 ΣT_{s}

Effluent Concentration (East) = 0.00E+00 uCi/ml

Eq A.9 NUREG 1400

Percentage of Release Limit of =

0.00%

4E-15uCl/ml

West Monitor

······································	Time Sampled	Effluent Concentration	Concentration x	
Date	•	in uCi/ml	Sample Min / Day	Comments
8/18/03	0	0.00E+00	0.00E+00	
8/19/03	0	0.00E+00	0.00E+00	
8/20/03	355	0.00E+00	0.00E+00	
8/21/03	445	0.00E+00	0.00E+00	
8/22/03	297	1.81E-15	5,38E-13	
	1007	1 81F-15	5 38F-13	

$C_{\text{evg}} = \sum T_{e,i} C_{i}$	Time Weighted Weekly	
$\Sigma T_{\mathbf{s}}$	Effluent Concentration (West) =	4.90E-16 uCi/ml
Eq A.9 NUREG 1400	Percentage of Release Limit of =	12.25%

Area Air Monitoring Summary Sheet - Staplex High Volume Pumps (Daily Analysis)

Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

Report No. 31

August 18, 2003 - August 22, 2003

				total	cubic	sample		day	after a	nalysis			fou	ır day a	nalysis		% of Limit
Sample	date	start	stop	time	ft/ min	volume	date	gross	bkg	net	Concentration	date	gross	bkg	net	Concentration	4.00E-15
ID	sampled	time	time	sampled	(CFM)	analyzed	analyzed	counts	counts	срт	in uCi/mi	anelyzed	counts	counts	cpm	in uCi/ml	uCl/mi
N2059	8/20/03	8:32am	2:27pm	355	42	1.48E+07	8/21/03	82	13	2.3	5.61E-14	8/25/03	12	12	0	0.00E+00	0.00%
S2059	8/20/03	8:26am	2:35pm	369	47	1.72E+07	8/21/03	70	13	1.9	3.99E-14	8/25/03	14	12	0.067	1.40E-15	34.96%
E2059	8/20/03	8:40am	2:22pm	342	48	1.63E+07	8/21/03	73	13	2	4.43E-14	8/25/03	11	12	0	0.00E+00	0.00%
W2059	8/20/03	8:35am	2:30pm	355	50	1.76E+07	8/21/03	51	13	1.26667	2.60E-14	8/25/03	12	12	0	0.00E+00	0.00%
N2060	8/21/03	8:22am	3:30pm	428	45	1.91E+07	8/22/03	150	12	4.6	8.69E-14	8/26/03	14	13	0.033	6.30E-16	15.74%
S2060	8/21/03	8:15am	3:39pm	444	40	1.76E+07	8/22/03	112	12	3.33333	6.83E-14	8/26/03	10	13	0	0.00E+00	0.00%
E2060	8/21/03	8:21am	3:30pm	429	41	1.74E+07	8/22/03	116	12	3.46667	7.17E-14	8/26/03	13	13	0	0.00E+00	0.00%
W2060	8/21/03	8:12am	3:37pm	445	42	1.85E+07	8/22/03	143	12	4.36667	8.50E-14	8/26/03	11	13	0	0.00E+00	0.00%
N2061	8/22/03	8:06am	1:10pm	304	42	1.27E+07	8/25/03	16	12	0.13333	3.80E-15	8 <i>/27/</i> 03	10	11	0	0.00E+00	0.00%
S2061	8/22/03	8:11am	1:06pm	295	43	1.26E+07	8/25/03	. 14	12	0.06667	1.91E-15	8/27/03	12	11	0.033	9.56E-16	23.90%
E2061	8/22/03	8:08am	1:13pm	305	42	1.27E+07	8/25/03	18	12	0.2	5.68E-15	8/27/03	10	11	0	0.00E+00	0.00%
W2061	8/22/03	8:12 am	1:09pm	297	45	1.32E+07	8/25/03	13	12	0.03333	9.07E-16	8/27/03	13	11	0.067	1.81E-15	45.36%
only day material	Wednesday 8/20/03 through Friday 8/22/03 were the only days during this week when thorium contaminated material was excavated and loaded. Air Monitoring not required on other work days																

Area Air Monitoring Summary Sheet - Weekly Effluent Concentration Report

Lakeshore East Project - 221 North Columbus Drive, Chicago, IL.

North Monitor	Report #32	8/25/03 - 8/29/03	(High Volume)
Time Sampled	Pffluent Con	centration [Concentration	Y I

- 1		Time Sampled	Effluent Concentration	Concentration x	
	Date	(minutes)	in uCi/mi	Sample Min / Day	Comments
	8/25/03	281	2.05E-15	5.76E-13	Monday 8/25/03 was only day
١	8/28/03	0	0.00E+00	0. 00 E+00	this week that excavation and
- [8/27/03	0	0.00E+00	0.00E+00	loading was performed
- [8/28/03	0	0.00E+00	0.00E+00	
	8/29/03	0	0.00E+00	0,00E+00	
•		281	2.05E-15	5.76E-13	

 $C_{\text{avg}} = \sum T_{\text{s,l}} C_{\text{l}}$

Time Weighted Weekly

ΣΤ

Effluent Concentration (North) = 2.05E-15 uCi/ml

Percentage of Release Limit of = 51.25%

Eq A.9 NUREG 1400

4E-15uCi/ml

South Monitor

JOUUI MU	777404			
	Time Sampled	Effluent Concentration	Concentration x	
Date	(minutes)	in uCi/ml	Sample Min / Day	Comments
8/25/03	279	0.00E+00	0.00E+00	
8/26/03	0	0.00E+00	0.00E+00	
8/27/03	0	0.00E+00	0.00E+00	
8/28/03	0	0.00E+00	0.00E+00	
8/29/03	0	0.00E+00	0.00E+00	
	279	0.00E+00	0.00E+00	

 $C_{\text{evg}} = \sum T_{\text{s,i}} C_{\text{i}}$

Time Weighted Weekly

ΣΤ

Effluent Concentration (South) = 0.00E+00 uCi/ml

Eq A.9 NUREG 1400

Percentage of Release Limit of = 0.00%

4E-15uCi/ml

East Monitor

	Time Sampled	Effluent Concentration	Concentration x	
Date	(minutes)	in uÇi/mi	Sample Min / Day	Comments
8/25/03	278	0.00E+00	0.00E+00	
8/26/03	0	0.00E+00	0.00E+00	
8/27/03	0	0.00E+00	0.00E+00	
8/28/03	0	0.00E+00	0.00E+00	
8/29/03	0	0.00E+00	0.00E+00	
	278	0.00E+00	0.00E+00	

 $C_{avg} = \sum T_{s,i} C_i$

Time Weighted Weekly Σ Τ_ε Effluent Concentration

Effluent Concentration (East) = 0.00E+00 uCi/ml

Eq A.9 NUREG 1400

Percentage of Release Limit of = 0.00%

4E-15uCi/ml

West Monitor

	Time Sampled	Effluent Concentration	Concentration x	
Date	(minutes)	in uCi/mi	Sample Min / Day	Comments
8/25/03	279	0.00E+00	0.00E+00	
8/26/03	0	0.00E+00	0.00E+00	
8/27/03	0	0.00E+00	0.00E+00	
8/28/03	0	0.00E+00	0.00E+00	
8/29/03	0	0.00E+00	0.00E+00	
•	279	0.00E+00	0.00E+00	

 $C_{\text{evg}} = \underline{\Sigma T_{\text{s.l.}} C_{\text{l}}}$ ΣT_{s} Eq A.9 NUREG 1400

Time Weighted Weekly

Effluent Concentration (West) = 0.00E+00 uCi/ml

Percentage of Release Limit of = 0.00%

Area Air Monitoring Summary Sheet - Staplex High Volume Pumps (Daily Analysis) Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

Report No. 32

August 25, 2003 - August 29, 2003

p.c.		• 			·	.000 //4	3										
				total	cubic	sample		day	after a	nalysis			for	ır day a	nalysis		% of Limit
Sample	date	start	atop	time	ft/min	volume	date	gross	bkg	net	Concentration	date	gross	bkg	net	Concentration	4.00E-15
ID	sampled	time	time	sampled	(CFM)	analyzed	analyzed	counts	counts	cpm	in uCi/mi	analyzed	counts	counts	срт	in uCi/mi	uCl/ml
N2062	8/25/03	8:41am	1:22pm	281	42	1.17E+07	8/26/03	113	13	3.33333	1.03E-13	8/29/03	13	11	0.067	2.05E-15	51.37%
S2062	8/25/03	8:45am	1:24pm	279	41	1.13E+07	8/26/03	84	13	2.36667	7.53E-14	8/29/03	10	11	0	0.00E+00	0.00%
E2062	8/25/03	8:43am	1:21pm	278	39	1.07E+07	8/26/03	139	13	4.2	1.41E-13	8/29/03	11	11	0	0.00E+00	0.00%
W2062	8/25/03	8:47am	1:26pm	279	40	1.11E+07	8/26/03	107	13	3.13333	1.02E-13	8/29/03	9	11	0	0.00E+00	0.00%
week wh excavate	en thorium	ontamir ded. Air M	s the only on ated mate lonitoring r	rial was	-												

Area Air Monitoring Summary Sheet - Weekly Effluent Concentration Report

Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

North Mor	nitor	Report #33 10/27/03 -	10/31/03	(High Volume)			
	Time Sampled	Effluent Concentration	Concentration x				
Date	(minutes)	in uCi/ml	Sample Min / Day	Comments			
10/27/03	0	0.00E+00	0.00E+00	No Work			
10/28/03	0	0.00E+00	0.00E+00	No Work			
10/29/03	307	0.00E+00	0.00E+00				
10/30/03	349	0.00E+00	0.00E+00				
10/31/03	382	0.00E+00	0.00E+00				
	1038	0.00E+00	0.00E+00				

 $C_{\text{evg}} = \sum T_{\text{s.i.}} C_{\text{i}}$ Time Weighted Weekly $\sum T_{\text{s.}}$ Effluent Concentration (North) = 0.00E+00 uCi/ml $Eq A.9 \ \text{NUREG 1400}$ Percentage of Release Limit of = 0.00% 4E-15uCi/ml

South Monitor

	Time Sampled	Effluent Concentration	Concentration x	
Date	(minutes)	in uCi/ml	Sample Min / Day	Comments
10/27/03	0	0.00E+00	0.00E+00	No Work
10/28/03	0	0.00E+00	0.00E+00	No Work
10/29/03	304	1.71E-15	5.20E-13	
10/30/03	348	1.78E-15	6.12E-13	
10/31/03	383	0.00E+00	0.00E+00	
	1035	3.47E-15	1.13E-12	

 $C_{\text{evg}} = \sum T_{\text{s,i}} C_{\text{i}}$ Time Weighted Weekly $\sum T_{\text{s}}$ Effluent Concentration (South) = 1.09E-15 uCi/ml Eq A.9 NUREG 1400 Percentage of Release Limit of = 27.35% 4E-15uCi/ml

East Monitor

	Time Sampled	Effluent Concentration	Concentration x	
Date	(minutes)	in uCi/ml	Sample Min / Day	Comments
10/27/03	0	0.00E+00	0.00E+00	No Work
10/28/03	0	0.00E+00	0.00E+00	No Work
10/29/03	302	0.00E+00	0.00E+00	
10/30/03	347	0.00E+00	0.00E+00	
10/31/03	384	2.12E-15	8.14E-13	
	1033	2.12E-15	8.14E-13	

 $C_{\text{evg}} = \sum T_{\text{s.i.}} C_{\text{i}}$ Time Weighted Weekly $\sum T_{\text{s.}}$ Effluent Concentration (East) = 7.88E-16 uCi/ml $Eq A.9 \ NUREG \ 1400$ Percentage of Release Limit of = 19.70% 4E-15uCi/ml

West Monitor

	Time Sampled	Effluent Concentration	Concentration x	
Date		in uCi/ml	Sample Min / Day	Comments
10/27/03	0	0.00E+00	0.00E+00	No Work
10/28/03	0:	0.00E+00	0.00E+00	No Work
10/29/03	310	0.00E+00	0.00E+00	
10/30/03	354	7.20E-16	2.55E-13	
10/31/03	373	8.00E-16	2.98E-13	
	1037	1.52E-15	5.53E-13	

$C_{\text{avg}} = \sum T_{s,i} C_i$	Time Weighted Weekly	
ΣT_s	Effluent Concentration (West) =	6.34E-16 uCi/ml
Eq A.9 NUREG 1400	Percentage of Release Limit of '=	13.34%

Area Air Monitoring Summary Sheet - Staplex High Volume Pumps (Daily Analysis) Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

Report No. 33

October 27, 2003 - October 31, 2003

									-4				4				A -41 L-4
			1	total	cubic	sample		,	after a					ur day a			% of Limit
Sample	date	start	stop	time	ft/min	volume	date	gross	bkg	net	Concentration	date	gross	bkg	net	Concentration	4.00E-15
ID	sampled	time	time	sampled	(CFM)	analyzed	analyzed	counts	counts	cpm	in uCi/mi	analyzed	counts	counts	opm	in uCl/ml	uCi/ml
N2063	10/29/03	8:56am	2:03pm	307	47	1.43E+07	10/30/03	86	12	2.46687	6.27E-14	11/3/03	12	12	0	0.00E+00	0.00%
S2063	10/29/03	9:01am	2:05pm	304	47	1.42E+07	10/30/03	52	12	1.33333	3.42E-14	11/3/03	14	12	0.067	1.71E-15	42.79%
E2063	10/29/03	8:58am	2:00pm	302	46	1.38E+07	10/30/03	47	12	1.16667	3.08E-14	11/3/03	12	12	0	0.00E+00	0.00%
W2063	10/29/03	8:50am	2:00pm	310	49	1.51E+07	10/30/03	67	12	1.83333	4.43E-14	11/3/03	9	12	0	0.00E+00	0.00%
N2064	10/30/03	8:25am	2:14pm	349	44	1.52E+07	10/31/03	52	13	1.3	3.11E-14	11/4/03	11	11	0	0.00E+00	0.00%
S2064	10/30/03	8:22am	2:10pm	348	40	1.38E+07	10/31/03	142	13	4.3	1.13E-13	11/4/03	13	11	0.067	1.78E-15	43.92%
E2064	10/30/03	8:28am	2:15pm	347	41	1.41E+07	10/31/03	69	13	1.86667	4.81E-14	11/4/03	10	11	0	0.00E+00	0.00%
W2064	10/30/03		2:17pm	354	48	1.68E+07	10/31/03	67	13	1.8	3.89E-14		12	11	0.033	7.20E-16	•
N2065	10/31/03		2:43pm	382	45	1.70E+07	11/3/03		12	0.2	4.27E-15	ŀ			0	0.00E+00	
S2065	10/31/03		2:46pm	383	42	1.59E+07			12	0.33333	7.60E-15	8			0	0.00E+00	
E2065	10/31/03		2:47pm	384	45	1.71E+07	!	23	12		7.78E-15	5		11	0.1	2.12E-15	ľ
W2065	10/31/03		2:41PM	373	41	1.52E+07			12		4.00E-15	1			0.033		1 .
Wednesday 10/29/03 through Friday 10/31/03 were the only days during this week when thorium contaminated material was excavated and loaded. Air Monitoring not required on other work days										** 4-day a 10/31/03 work was	not ana	dyzed ut	ntil 11/7	/03 because			

Area Air Monitoring Summary Sheet - Weekly Effluent Concentration Report

Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

North Mor	nitor	Report #34 11/3/03 - 1	11/7/03	(High Volume)			
	Time Sampled	Effluent Concentration	Concentration x				
Date	(minutes)	in uCi/ml	Sample Min / Day	Comments			
11/3/03	0	0.00E+00	0.00E+00	No Work			
11/4/03	0	0.00E+00	0.00E+00	No Work			
11/5/03	0	0.00E+00	0.00E+00	No Work			
11/6/03	0	0.00E+00	0.00E+00	No Work			
11/7/03	346	1.50E-15	5.19E-13				
	346	1.50E-15	5,19E-13				

 $C_{\text{evg}} = \sum T_{\text{s.i.}} C_{\text{i.}}$

 ΣT_{n}

Eq A.9 NUREG 1400

Time Weighted Weekly

Effluent Concentration (North) = Percentage of Release Limit of =

1.50E-15 uCi/ml

37.50%

4E-15uCi/ml

South Monitor

	Time Sampled	Effluent Concentration	Concentration x	
Date	(minutes)	in uCi/mi	Sample Min / Day	Comments
11/3/03	0	0.00E+00	0.00E+00	No Work
11/4/03	0	0.00E+00	0.00E+00	No Work
11/5/03	0	0.00E+00	0.00E+00	No Work
11/6/03	0	0.00E+00	0.00E+00	No Work
11/7/03	338	0.00E+00	0.00E+00	
	338	0.00F+00	0.00F+00	

 $C_{\text{evg}} = \Sigma T_{\text{s.i.}} C_{\text{i.}}$

Eq A.9 NUREG 1400

 ΣT_{s}

Time Weighted Weekly

Effluent Concentration (South) = Percentage of Release Limit of =

0.00E+00 uCi/ml

0.00%

4E-15uCl/ml

East Monitor

	Time Sampled	Effluent Concentration	Concentration x	
Date	(minutes)	in uCi/ml	Sample Min / Day	Comments
11/3/03	0	0.00E+00	0.00E+00	No Work
11/4/03	0	0.00E+00	0.00E+00	No Work
11/5/03	0	0.00E+00	0.00E+00	No Work
11/6/03	0	0.00E+00	0.00E+00	No Work
11/7/03	336	0.00E+00	0.00E+00	
	336	0.00E+00	0.00E+00	

 $C_{evp} = \sum T_{e,i} C_i$ ΣT_s

Eq A.9 NUREG 1400

Time Weighted Weekly

Effluent Concentration (East) =

0.00E+00 uCi/ml

Percentage of Release Limit of =

0.00%

4E-15uCi/ml

West Monitor

	Time Sampled	Effluent Concentration	Concentration x	
Date	(minutes)	in uCl/mi	Sample Min / Day	Comments
11/3/03	0	0.00E+00	0.00E+00	No Work
11/4/03	0	0.00E+00	0.00E+00	No Work
11/5/03	0	0.00E+00	0.00E+00	No Work
11/6/03	0	0.00E+00	0.00E+00	No Work
11/7/03	339	0.00E+00	0.00E+00	
	330	0.005+00	0.005+00	

$C_{\text{avg}} = \Sigma T_{\text{e,i}} C_{\text{i}}$
Σ Τ.
Eq A.9 NUREG 1400

Time Weighted Weekly	
Effluent Concentration (West) =	0.00E+00 uCi/ml
Pementage of Release Limit of =	0.00%

Area Air Monitoring Summary Sheet - Staplex High Volume Pumps (Daily Analysis)

Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

Report No. 34

November 3, 2003 - November 7, 2003

						,											
			ſ	total	cubic	sample		day	after a	nalysis			fou	ır day a	nalysis		% of Limit
Sample	date	start	stop	tlme	ft/ min	volume	date	gross	bkg	net	Concentration	date	gross	bkg	net	Concentration	4.00E-15
D .	sampled	time	time	sampled	(CFM)	analyzed	analyzed	counts	counts	cpm	in uCi/mi	analyzed	counts	counts	opm	in uCi/mi	uCi/mi
N2066	11/7/03	8:12am	1:58pm	346	47	1.61E+07	11/10/03	16	13	0.1	2.26E-15	11/11/03	15	13	0.067	1.50E-15	37.60%
S2066	11/7/03	8:14am	1:52pm	338	47	1.57E+07	11/10/03	13	13	0	0.00E+00	11/11/03	13	13	0	0.00E+00	0.00%
E2066	11/7/03	8:17am	1:53pm	336	45	1.50E+07	11/10/03	14	13	0.03333	8.09E-16	11/11/03	12	13	0	0.00E+00	0.00%
W2066	11/7/03	8:11am	1:50pm	339	44	1.48E+07	11/10/03	10	13	0	0.00E+00	11/11/03	12	13	0	0.00E+00	0.00%
week wheek excervate	en thorium	n contami ded. Air N	as the only nated mate fonitoring t	rial was													

b. Personal Air Monitoring

· · · · · · · · · · · · · · · · · · ·	
	The second secon
	
	
	Name of the Control o
	
·	
	
	_ -
	

Week 23 March 10 - March 14, 2003

Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

*** All PAM's with elevated counts on day after analysis are recounted after 4 days (see attached)

			Flow	Total	Total		Gross	Bkg		Sample
Date			Rate	Time	Sample	Analysis	Counts	Counts	Net	Concentration
Collected Name	Sample ID	PAM #	(lpm)	Sampled	Volume (ml)	Date	(30 min)	(30 min)	СРМ	(uCi/ml)
3/10/2003 Lindsay Aschim	PAM2191	002-766	2.5	525	1312500	3/11/2003	18	12	0.20	3.85E-14
3/10/2003 Jerry Krane	PAM2192	002-574	2.5	521	1302500	3/11/2003	20	12	0.27	5.17E-14
3/11/2003 Jerry Krane	PAM2193	002-574	2.5	508	1270000	3/12/2003	18	12	0.20	3.97E-14
3/11/2003 Tim O'Brien	PAM2194	006-234	2.5	516	1290000	3/12/2003	17	12	0.17	3.26E-14
3/12/2003 Jerry Krane	PAM2195	006-234	2.5	516	1290000	3/13/2003	11	13	0.00	0.00E+00
3/12/2003 Lindsay Aschim	PAM2196	002-574	2.5	513	1282500	3/13/2003	13	13	0.00	0.00E+00
3/13/2003 Tim O'Brien	PAM2197	006-234	2.5	492	1230000	3/14/2003	9	12	0.00	0.00E+00
3/13/2003 Lindsay Aschim	PAM2198	002-766	2.5	497	1242500	3/14/2003	12	12	0.00	0.00E+00
3/14/2003 Tim O'Brien	PAM2199	006-234	2.5	456	1140000	3/17/2003	9	12	0.00	0.00E+00
3/14/2003 Jerry Krane	PAM2200	002-766	2.5	460	1150000	3/17/2003	11	12	0.00	0.00E+00

Week 23 March 10 - March 14, 2003

Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

***Note: All samples on this page were analyzed after 4 days to allow for thorium daughter decay

Date Collected	Name	Sample ID	PAM#	Flow Rate (Ipm)	Total Time Sampled	Total Sample Volume (ml)	Analysis Date	Gross Counts (30 min)	Bkg Counts (30 min)	Sample Concentration (uCi/ml)	% of DAC
	Lindsay Aschim	PAM2191	002-766	2.5	<u></u>	1312500	3/14/2003	12	12	 0.00E+00	0.00%
	Jerry Krane	PAM2192	002-574	2.5		1302500	3/14/2003	10	12	 0.00E+00	0.00%
	Jerry Krane Tim O'Brien	PAM2193 PAM2194	002-574 006-234	2.5 2.5		1270000 1290000	3/17/2003 3/17/2003	12 11	12 12	 0.00E+00 0.00E+00	0.00% 0.00%

Occupational Dose Limit for Occupational Radiation Exposure = 5 rem Total Effective Dose Equivalent

2000 DAC-Hours = 5 rem

DAC (Derived Air Concentration) for Th-232 = 5E-13uCi/ml

Week 24 March 17 - March 21, 2003

Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

*** All PAM's with elevated counts on day after analysis are recounted after 4 days (see attached)

				Flow	Total	Total		Gross	Bkg		Sample
Date				Rate	Time	Sample	Analysis	Counts	Counts	Net	Concentration
Collected	Name	Sample ID	PAM#	(lpm)_	Sampled	Volume (ml)	Date	(30 min)	(30 min)	СРМ	(uCi/ml)
3/17/2003	Lindsay Aschim	PAM2201	002-766	2.5	425	1062500	3/18/2003	18	10	0.27	6.33E-14
3/17/2003	Tim O'Brien	PAM2202	002-574	2.5	485	1212500	3/18/2003	16	10	0.20	4.16E-14
3/18/2003	Jerry Krane	PAM2203	002-574	2.5	525	1312500	3/19/2003	12	13	0.00	0.00E+00
3/18/2003	Tim O'Brien	PAM2204	002-766	2.5	520	1300000	3/19/2003	13	13	0.00	0.00E+00
3/19/2003	Jerry Krane	PAM2205	002-574	2.5	498	1245000	3/20/2003	10	10	0.00	0.00E+00
3/19/2003	Lindsay Aschim	PAM2206	002-766	2.5	496	1240000	3/20/2003	12	10	0.07	1.36E-14
3/20/2003	Tim O'Brien	PAM2207	002-574	2.5	485	1212500	3/21/2003	13	13	0.00	0.00E+00
3/20/2003	Lindsay Aschim	PAM2208	002-766	2.5	210	525000	3/21/2003	11	13	0.00	0.00E+00
3/21/2003	Tim O'Brien	PAM2209	002-574	2.5	500	1250000	3/24/2003	11	11	0.00	0.00E+00
3/21/2003	Jerry Krane	PAM2210	006-234	2.5	503	1257500	3/24/2003	9	11	0.00	0.00E+00
	-										

Week 24 March 17 - March 21, 2003

Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

***Note: All samples on this page were analyzed after 4 days to allow for thorium daughter decay

				Flow	Total	Total		Gross	Bkg		Sample	% of
Date				Rate	Time	Sample	Analysis	Counts	Counts	Net	Concentration	DAC
Collected	Name	Sample ID	PAM#	(lpm)	Sampled	Volume (ml)	Date	(30 min)	(30 min)	CPM	(uCi/ml)	
3/17/2003	Lindsay Aschim	PAM2201	002-766	2.5	425	1062500	3/21/2003	9	13	0.00	0.00E+00	0.00%
3/17/2003	Tim O'Brien	PAM2202	002-574	2.5	485	1212500	3/21/2003	12	13	0.00	0.00E+00	0.00%
3/19/2003	Lindsay Aschim	PAM2206	002-766	2.5	496	1240000	3/24/2003	10	11	0.00	0.00E+00	0.00%

Occupational Dose Limit for Occupational Radiation Exposure = 5 rem Total Effective Dose Equivalent

2000 DAC-Hours = 5 rem

DAC (Derived Air Concentration) for Th-232 = 5E-13uCi/ml

Week 25 March 24 - March 28, 2003

Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

*** All PAM's with elevated counts on day after analysis are recounted after 4 days (see attached)

f				Flow	Total	Total		Gross	Bkg		Sample
Date				Rate	Time	Sample	Analysis	Counts	Counts	Net	Concentration
Collected	Name	Sample ID	PAM #	(lpm)	Sampled	Volume (ml)	Date	(30 min)	(30 min)	CPM	(uCi/ml)
3/24/2003	Jerry Krane	PAM2211	006-234	2.5	551	1377500	3/25/2003	32	12	0.67	1.22E-13
3/24/2003	Odell Morgan	PAM2212	002-574	2.5	552	1380000	3/25/2003	27	12	0.50	9.14E-14
3/24/2003	Lindsay Aschim	PAM2213	002-766	2.5	550	1375000	3/25/2003	40	12	0.93	1.71E-13
3/25/2003	Lindsay Aschim	PAM2214	006-234	2.5	403	1007500	3/26/2003	18	13	0.17	4.17E-14
3/25/2003	Odell Morgan	PAM2215	002-766	2.5	515	1287500	3/26/2003	12	13	0.00	0.00E+00
3/25/1930	Tim O'Brien	PAM2216	002-574	2.5	516	1290000	3/26/2003	13	13	0.00	0.00E+00
3/26/2003	Odell Morgan	PAM2217	002-574	2.5	491	1227500	3/27/2003	14	11	0.10	2.06E-14
3/26/2003	Lindsay Aschim	PAM2218	002-766	2.5	493	1232500	3/27/2003	18	11	0.23	4.78E-14
3/26/2003	Jerry Krane	PAM2219	006-234	2.5	490	1225000	3/27/2003	17	11	0.20	4.12E-14
3/27/2003	Lindsay Aschim	PAM2220	006-234	2.5	527	1317500	3/28/2003	12	13	0.00	0.00E+00
3/27/2003	Tim O'Brien	PAM2221	002-766	2.5	529	1322500	3/28/2003	15	13	0.07	1.27E-14
3/27/2003	Armando Ruiz	PAM2222	002-574	2.5	526	1315000	3/28/2003	13	13	0.00	0.00E+00
3/28/2003	Tim O'Brien	PAM2223	002-574	2.5	463	1157500	3/31/2003	10	12	0.00	0.00E+00
3/28/2003	Lindsay Aschim	PAM2224	006-234	2.5	463	1157500	3/31/2003	12	12	0.00	0.00E+00
3/28/2003	Odell Morgan	PAM2225	002-766	2.5	496	1240000	3/31/2003	11	12	0.00	0.00E+00

Week 25 March 24 - March 28, 2003

Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

***Note: All samples on this page were analyzed after 4 days to allow for thorium daughter decay

				Flow	Total	Total		Gross	Bkg		Sample	% of
Date				Rate	Time	Sample	Analysis	Counts	Counts	Net	Concentration	DAC
Collected	Name	Sample ID	PAM #	(lpm)	Sampled	Volume (ml)	Date	(30 min)	(30 min)	CPM	(uCi/ml)	
3/24/2003	Jerry Krane	PAM2211	006-234	2.5	551	1377500	3/28/2003	9	13	0.00	0.00E+00	0.00%
3/24/2003	Odell Morgan	PAM2212	002-574	2.5	552	1380000	3/28/2003	11	13	0.00	0.00E+00	0.00%
3/24/2003	Lindsay Aschim	PAM2213	002-766	2.5	550	1375000	3/28/2003	14	13	0.03	6.12E-15	1.22%
3/25/2003	Lindsay Aschim	PAM2214	006-234	2.5	403	1007500	3/31/2003	11	12	0.00	0.00E+00	0.00%
3/26/2003	Odell Morgan	PAM2217	002-574	2.5	491	1227500	3/31/2003	10	12	0.00	0.00E+00	0.00%
3/26/2003	Lindsay Aschim	PAM2218	002-766	2.5	493	1232500	3/31/2003	12	12	0.00	0.00E+00	0.00%
3/26/2003	Jerry Krane	PAM2219	006-234	2.5	490	1225000	3/31/2003	12	12	0.00	0.00E+00	0.00%
3/27/2003	Tim O'Brien	PAM2221	002-766	2.5	529	1322500	4/1/2003	10	12	0.00	0.00E+00	0.00%

Occupational Dose Limit for Occupational Radiation Exposure = 5 rem Total Effective Dose Equivalent

2000 DAC-Hours = 5 rem

DAC (Derived Air Concentration) for Th-232 = 5E-13uCi/ml

Week 26 March 31 - April 4, 2003

Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

*** All PAM's with elevated counts on day after analysis are recounted after 4 days (see attached)

Date				Flow Rate	Total Time	Total Sample	Analysis	Gross Counts	Bkg Counts	Net	Sample Concentration
Collected	Name	Sample ID	PAM #	(lpm)	Sampled	Volume (ml)	Date	(30 min)	(30 min)	CPM	(uCi/ml)
3/31/2003 Odel	l Morgan	PAM2226	002-574	2.5	547	1367500	4/1/2003	9	12	0.00	0.00E+00
3/31/2003 Tim (O'Brien	PAM2227	002-766	2.5	385	962500	4/1/2003	12	12	0.00	0.00E+00
3/31/2003 Linds	say Aschim	PAM2228	006-234	2.5	552	1380000	4/1/2003	12	12	0.00	0.00E+00
4/1/2003 Tim (O'Brien	PAM2229	002-574	2.5	493	1232500	4/2/2003	34	11	0.77	1.57E-13 1
4/1/2003 Linds	say Aschim	PAM2230	006-234	2.5	526	1315000	4/2/2003	23	11	0.40	7.68E-14 ¹
4/1/2003 Odel	l Morgan	PAM2231	002-766	2.5	525	1312500	4/2/2003	36	11	0.83	1.60E-13 ¹
4/2/2003 Jerry	/ Krane	PAM2232	002-766	2.5	527	1317500	4/3/2003	15	10	0.17	3.19E-14
4/2/2003 Linds	say Aschim	PAM2233	006-234	2.5	527	1317500	4/3/2003	9	10	0.00	0.00E+00
4/2/2003 Odel	l Morgan	PAM2234	002-574	2.5	529	1322500	4/3/2003	10	10	0.00	0.00E+00
4/3/2003 Jerry	Krane	PAM2235	002-766	2.5	508	1270000	4/4/2003	14	12	0.07	1.32E-14 1
4/3/2003 Odel	l Morgan	PAM2236	002-574	2.5	503	1257500	4/4/2003	11	12	0.00	0.00E+00

No Field Work on 4/4/03 - Rained Out

Week 26 March 31 - April 4, 2003

Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

***Note: All samples on this page were analyzed after 4 days to allow for thorium daughter decay

Date Collected	Name	Sample ID	PAM #	Flow Rate (Ipm)	Total Time Sampled	Total Sample Volume (ml)	Analysis Date	Gross Counts (30 min)	Bkg Counts (30 min)	Net CPM	Sample Concentration (uCi/ml)	% of DAC
4/1/2003	Tim O'Brien	PAM2229	002-574	2.5	493	1232500	4/7/2003	10	12	0.00	0.00E+00	0.00%
4/1/2003	Lindsay Aschim	PAM2230	006-234	2.5	526	1315000	4/7/2003	13	12	0.03	6.40E-15	1.28%
4/1/2003	Odell Morgan	PAM2231	002-766	2.5	525	1312500	4/7/2003	11	12	0.00	0.00E+00	0.00%
4/2/2003	Jerry Krane	PAM2232	002-766	2.5	527	1317500	4/7/2003	12	12	0.00	0.00E+00	0.00%
4/3/2003	Jerry Krane	PAM2235	002-766	2.5	508	1270000	4/10/2003	13	13	0.00	0.00E+00	0.00%

^{*} Note 4 day analysis of PAM2235 was not performed until 4/10/03 because we did not work on 4/8/03 or 4/9/03

Occupational Dose Limit for Occupational Radiation Exposure = 5 rem Total Effective Dose Equivalent

2000 DAC-Hours = 5 rem

DAC (Derived Air Concentration) for Th-232 = 5E-13uCi/ml

Week 26 March 31 - April 4, 2003

Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

*** All PAM's with elevated counts on day after analysis are recounted after 4 days (see attached)

Date				Flow Rate	Total Time	Total Sample	Analysis	Gross Counts	Bkg Counts	Net	Sample Concentration
Collected	Name	Sample ID	PAM#	(lpm)		•		(30 min)	(30 min)	СРМ	(uCi/ml)
4/10/2003	Jerry Krane	PAM2237	006-234	2.5	370	925000	4/11/2003	9	11	0.00	0.00E+00
4/10/2003	Odell Morgan	PAM2238	002-766	2.5	555	1387500	4/11/2003	11	11	0.00	0.00E+00
											<i>,</i>

Week 27 April 7 - April 11, 2003

Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

***Note: All samples on this page were analyzed after 4 days to allow for thorium daughter decay

Date Collected	Nama	Sample ID	DAM #	Flow Rate	Total Time	Total Sample	Analysis	Gross Counts	Bkg Counts	Sample Concentration	% of DAC
Date Collected	Name	Sample ID	PAM #	Rate (Ipm)	Time Sampled	•			Counts (30 min)		D

Occupational Dose Limit for Occupational Radiation Exposure = 5 rem Total Effective Dose Equivalent

2000 DAC-Hours = 5 rem

DAC (Derived Air Concentration) for Th-232 = 5E-13uCi/ml

Week 28 June 16 - June 20, 2003

Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

*** All PAM's with elevated counts on day after analysis are recounted after 4 days (see attached)

Date Collected	Name	Sample ID	PAM#	Flow Rate (Ipm)	Total Time Sampled	Total Sample Volume (ml)	Analysis Date	Gross Counts (30 min)	Bkg Counts (30 min)	Net CPM	Sample Concentration (uCi/ml)
6/18/03	Odell Morgan	PAM2239	006-234	2.5	310	775000	6/19/03	15	12	0.10	3.26E-14
6/18/03	Glenn Huber	PAM2240	002-574	2.5	310	775000	6/19/03	12	12	0.00	0.00E+00
6/19/03	Joel Ahrweiler	PAM2241	006-234	2.5	422	1055000	6/20/03	10	11	0.00	0.00E+00
6/19/03	Odell Morgan	PAM2242	002-574	2.5	424	1060000	6/20/03	11	11	0.00	0.00E+00

Note: There has been no onsite excavation of soil since April 11, 2003. Radiation monitoring of construction activities started on June 16, 2003.

Wednesday 6/18/03 and Thursday 6/19/03 were the only days during this week when thorium contaminated material was excavated and loaded. Air Monitoring not required on other work days

Week 28 June 16 - June 20, 2003

Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

***Note: All samples on this page were analyzed after 4 days to allow for thorium daughter decay

Date Collected	Name	Sample ID	PAM#	Flow Rate (Ipm)	Total Time Sampled	Total Sample Volume (ml)	Analysis Date	Bkg Counts (30 min)		Sample Concentration (uCi/ml)	% of DAC
	Odell Morgan	PAM2239	006-234	2.5		The second se			0.00		0.00%
	•										

Occupational Dose Limit for Occupational Radiation Exposure = 5 rem Total Effective Dose Equivalent

2000 DAC-Hours = 5 rem

DAC (Derived Air Concentration) for Th-232 = 5E-13uCi/ml

Week 29 June 23 - June 27, 2003

Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

*** All PAM's with elevated counts on day after analysis are recounted after 4 days (see attached)

				Flow	Total	Total		Gross	Bkg		Sample
Date]		Rate	Time	Sample	Analysis	Counts	Counts	Net	Concentration
Collected	Name	Sample ID	PAM#	(lpm)	Sampled	Volume (ml)	Date	(30 min)	(30 min)	CPM	(uCi/ml)
6/26/03	Tim O'Brien	PAM2243	002-574	2.5	175	437500	6/27/03	11	11	0.00	0.00E+00
6/26/03	Odell Morgan	PAM2244	006-234	2.5	175	437500	6/27/03	10	11	0.00	0.00E+00
6/27/03	Odell Morgan	PAM2245	006-234	2.5	422	1055000	6/30/03	11	13	0.00	0.00E+00
6/27/03	Tim O'Brien	PAM2246	002-574	2.5	424	1060000	6/30/03	13	13	0.00	0.00E+00

Thursday 6/26/03 and Friday 6/27/03 were the only days during this week when thorium contaminated material was excavated and loaded. Air Monitoring not required on other work days

Week 29 June 23 - June 27, 2003

Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

***Note: All samples on this page were analyzed after 4 days to allow for thorium daughter decay

Date				Flow Rate	Total Time	Total Sample	Analysis	Gross Counts	Bkg Counts	Net	Sample Concentration	% of DAC
Collected	Name	Sample ID	PAM #	(lpm)	Sampled	•		(30 min)				
lo 4 day ana	lysis of PAM's	required for t	his monit	orina neri	ođ							
o 4 day ana	iyolo ol I Alli S	required to t	ina mom	ornig peri	Ju							

Occupational Dose Limit for Occupational Radiation Exposure = 5 rem Total Effective Dose Equivalent

2000 DAC-Hours = 5 rem

DAC (Derived Air Concentration) for Th-232 = 5E-13uCi/ml

Week 30 June 30 - July 4, 2003

Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

*** All PAM's with elevated counts on day after analysis are recounted after 4 days (see attached)

				Flow	Total	Total		Gross	Bkg		Sentiple
Date	•	1	ł	Rate	Time	Sample	Analysis	Counts	Counts	Net	Concentration
Collected	Name	Sample 1D	PAM#	(ipm)	Sampled	(Im) emuloY	Date	(30 min)	(30 min)	CPM	(uCl/mil)
6/30/03	Odell Morgan	PAM2247	002-574	2.5	355	887500	7/1/03	10	12	0.00	0.00E+00
6/30/03	Tim O'Brien	PAM2248	006-234	2.5	355	887500	7/1/03	11	12	0.00	0.00E+00
7/1/03	Odell Morgan	PAM2248	006-234	2.5	290	725000	7/2/03	20	12	0.27	9.28E-14
7/1/03	Tim O'Brien	PAM2250	002-574	2.5	290	725000	7/2/03	14	12	0.07	2.32E-14
7/2/03	Odell Morgan	PAM2251	002-574	2.5	388	970000	7/3/03	13	13	0.00	0.00E+00
7/2/03	Tim O'Brien	PAM2252	008-234	2.5	388	970000	7/3/03	16	13	0.10	2.60E-14

Monday 6/30/03 through Wednesday 7/2/03 were the only days during this week when thorium contaminated material was excavated and loaded. Air Monitoring not required on other work days

Week 30 June 30 - July 4, 2003

Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

***Note: All samples on this page were analyzed after 4 days to allow for thorium daughter decay

Date				Flow Rate	Total Time	Total Sampie	Analysis	Gross Counts	Bkg Counts	Net	Sample Concentration	% of DAC
Collected	Name	Sample ID	PAM#	(ipm)	Sampled	Volume (mi)	Date	(30 min)				
7/1/03	Odell Morgan	PAM2249	006-234	2.5	290	725000	7/7/03	12	13	0.00	0.00E+00	0.00%
7/1/03	Tim O'Brien	PAM2250	002-574	2.5	290	725000	7/7/03	13	13	0.00	0.00E+00	0.00%
7/2/03	Tim O'Brien	PAM2252	006-234	2.5	388	970000	7/7/03	11	13	0.00	0.00E+00	0.00%
112143		FMMZZGZ	000-234	2.3	, 300	910000	111103	*1	13	5. 00	V.00E+00	U.

Occupational Dose Limit for Occupational Radiation Exposure = 5 rem Total Effective Dose Equivalent

2000 DAC-Hours = 5 rem

DAC (Derived Air Concentration) for Th-232 = 5E-13uCi/ml

Personal Air Monitoring Summary Sheet (PAM's -Daily Analysis)

Report No. 31 August 18 - August 22, 2003

Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

*** All PAM's with elevated counts on day after analysis are recounted after 4 days (see attached)

Date Collected	Name	Sample ID	PAM#	Flow Rate (lpm)	Total Time Sampled	Total Sample Volume (mi)	Analysis Date	Gross Counts (30 min)	Bkg Counts (30 min)	Net CPM	Sample Concentration (uCi/ml)
8/20/03	Glenn Huber	PAM2253	002-574	2.5	367	917500	8/21/03	11	13	0.00	0.00E+00
8/20/03	Odell Morgan	PAM2254	006-234	2.5	367	917500	8/21/03	13	13	0.00	0.00€+00
8/21/03	Glenn Huber	PAM2255	002-574	2.5	412	1030000	8/22/03	18	12	0.20	4.90E-14
8/21/03	Odell Morgan	PAM2256	006-234	2.5	412	1030000	8/22/03	14	12	0.07	1.63E-14
8/22/03	Glenn Huber	PAM2257	002-574	2.5	242	605000	8/25/03	12	12	0.00	0.00E+00
8/22/03	Odell Morgan	PAM2258	006-234	2.5	242	605000	8/25/03	12	12	0.00	0.00E+00

Wednesday 8/20/03 through Friday 8/22/03 were the only days during this week when thorium contaminated material was excavated and loaded. Air Monitoring not required on other work days

Note: Official airborne Th-232 concentrations are obtained from 4 Day Analysis. See attached 4 Day Analysis Form for Occupational Dose Limit Information.

Personal Air Monitoring Summary Sheet (PAM's -4 Day Analysis)

Report No. 31 August 18 - August 22, 2003

Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

***Note: All samples on this page were analyzed after 4 days to allow for thorium daughter decay

				Flow	Total	Total		Gross	Bkg		Sample	% of
Date		1		Rate	Time	Sample	Analysis	Counts	Counts	Net	Concentration	DAC
Collected	Name	Sample ID	PAM#	(lpm)	Sampled	Volume (ml)	Date	(30 min)	(30 min)	СРМ	(uCi/ml)	
8/21/03	Glenn Huber	PAM2255	002-574	2.5	412	1030000	8/26/03	12	13	0.00	0.00E+00	0.00%
8/21/03	Odell Morgan	PAM2256	006-234	2.5	412	1030000	8/26/03	10	13	0.00	0.00E+00	0.00%

Occupational Dose Limit for Occupational Radiation Exposure = 5 rem Total Effective Dose Equivalent

2000 DAC-Hours = 5 rem

DAC (Derived Air Concentration) for Th-232 = 5E-13uCi/ml

Administrative Site Limit for Occupational Exposure = 30% Th-232 DAC = 1.5E-13 uCi/ml

Personal Air Monitoring Summary Sheet (PAM's -Daily Analysis)

Report No. 32 August 25 - August 29, 2003

Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

*** All PAM's with elevated counts on day after analysis are recounted after 4 days (see attached)

Date Collected	Name	Sample ID	PAM#	Flow Rate (ipm)	Total Time Sampled	Total Sample Volume (ml)	Analysis Date	Gross Counts (30 min)	Bkg Counts (30 min)		Sample Concentration (uCi/mi)
8/25/03	Glenn Huber	PAM2259	006-234	2.5	385	962500	8/26/03	22	13	0.30	7.87E-14
8/25/03	Odell Morgan	PAM2260	002-574	2.5	385	962500	8/26/03	18	13	0.17	4.37E-14

Monday August 25, 2003 was the only day during this week when thorium contaminated material was excavated and loaded. Air Monitoring not required on other work days.

Note: Official airborne Th-232 concentrations are obtained from 4 Day Analysis. See attached 4 Day Analysis Form for Occupational Dose Limit Information.

Personal Air Monitoring Summary Sheet (PAM's -4 Day Analysis)

Report No. 32 August 25 - August 29, 2003

Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

***Note: All samples on this page were analyzed after 4 days to allow for thorium daughter decay

Date Collected Name Sample ID PAM # (Ipm) Sampled Volume (ml) Date (30 min) (30 min) CPM (uCl/ml)	% of		Sample		Bkg	Gross		Total	Total	Flow				
8/25/03 Glenn Huber PAM2259 006-234 2.5 385 962500 8/29/03 11 11 0.00 0.00E+00	DAC	1		Net	Counts	Counts	Analysis	Sample	Time	Rate				Date
			(uCi/ml)	CPM	(30 min)	(30 min)	Date	Volume (ml)	Sampled	(lpm)	PAM #	Sample ID	Name	Collected
8/25/03 Odell Morgan PAM2260 002-574 2.5 385 962500 8/29/03 9 11 0.00 0.00E+00	0.00%	5	0.00E+00	0.00	11	11	8/29/03	962500	385	2.5	006-234	PAM2259	Glenn Huber	8/25/03
	0.00%	0	0.00E+00	0.00	11	9	8/29/03	962500	385	2.5	002-574	PAM2260	Odell Morgan	8/25/03
	j													

Occupational Dose Limit for Occupational Radiation Exposure = 5 rem Total Effective Dose Equivalent

2000 DAC-Hours = 5 rem

DAC (Derived Air Concentration) for Th-232 = 5E-13uCi/ml

Administrative Site Limit for Occupational Exposure = 30% Th-232 DAC = 1.5E-13 uCi/ml

Personal Air Monitoring Summary Sheet (PAM's -Daily Analysis)

Report No. 33 October 27 - October 31, 2003

Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

*** All PAM's with elevated counts on day after analysis are recounted after 4 days (see attached)

Date Collected	Name	Sample ID	PAM#	Flow Rate (lpm)	Total Time Sampled	Totai Sample Volume (mi)	Analysis Date	Gross Counts (30 min)	Bkg Counts (30 min)	Net CPM	Sample Concentration (uCi/ml)
10/29/03	Odell Morgan	PAM2261	002-574	2.5	384	960000	10/30/03	13	12	0.03	8.84E-15
10/29/03	Glenn Huber	PAM2262	006-234	2.5	384	960000	10/30/03	18	12	0.20	5.30E-14
10/30/03	Odell Morgan	PAM2263	002-574	2.5	365	912500	10/31/03	17	13	0.13	3.72E-14
10/30/03	Glenn Huber	PAM2264	006-234	2.5	365	912500	10/31/03	12	13	0.00	0.00E+00
10/31/03	Odell Morgan	PAM2265	002-574	2.5	395	987500	11/3/03	11	12	0.00	0.00E+00
10/31/03	Glenn Huber	PAM2268	006-234	2.5	395	987500	11/3/03	12	12	0.00	0.00E+00

Monday August 25, 2003 was the only day during this week when thorium contaminated material was excavated and loaded. Air Monitoring not required on other work days.

Note: Official airborne Th-232 concentrations are obtained from 4 Day Analysis. See attached 4 Day Analysis Form for Occupational Dose Limit Information.

Personal Air Monitoring Summary Sheet (PAM's -4 Day Analysis)

Report No. 33 October 27 - October 31, 2003

Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

***Note: All samples on this page were analyzed after 4 days to allow for thorium daughter decay

				Flow	Total	Total		Gross	Bkg		Sample	% of
Date			1	Rate	Time	Sample	Analysis	Counts	Counts	Net	Concentration	DAC
Collected	Name	Sample ID	PAM#	(lpm)	Sampled	Volume (ml)	Date	(30 min)	(30 min)	CPM	(uCi/ml)	
10/29/03	Odell Morgan	PAM2261	006-234	2.5	384	960000	11/3/03	12	12	0.00	0.00E+00	0.00%
10/29/03	Glenn Huber	PAM2262	002-574	2.5	384	960000	11/3/03	10	12	0.00	0.00E+00	0.00%
10/30/03	Odell Morgan	PAM2263	002-574	2.5	365	912500	11/4/03	10	11	0.00	0.00E+00	0.00%

Occupational Dose Limit for Occupational Radiation Exposure = 5 rem Total Effective Dose Equivalent

2000 DAC-Hours = 5 rem

DAC (Derived Air Concentration) for Th-232 = 5E-13uCi/ml

Administrative Site Limit for Occupational Exposure = 30% Th-232 DAC = 1.5E-13 uCi/ml

Personal Air Monitoring Summary Sheet (PAM's -Daily Analysis)

Report No. 34 November 3 - November 7, 2003

Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

*** All PAM's with elevated counts on day after analysis are recounted after 4 days (see attached)

Date Collected	Name	Sample ID	PAM#	Flow Rate (Ipm)	Total Time Sampled	Total Sample Volume (ml)	Analysis Date		Bkg Counts (30 min)	Net CPM	Sample Concentration (uCi/ml)
11/7/03	Glenn Huber	PAM2267	006-234	2.5	380	950000	11/10/03	11	13	0.00	0.00E+00
11/7/03	Odell Morgan	PAM2268	002-574	2.5	380	950000	11/10/03	13	13	0.00	0.00E+00

Friday November 7, 2003 was the only day during this week when thorium contaminated material was excavated and loaded. Air Monitoring not required on other work days.

Note: Official airborne Th-232 concentrations are obtained from 4 Day Analysis. See attached 4 Day Analysis Form for Occupational Dose Limit Information.

Personal Air Monitoring Summary Sheet (PAM's -4 Day Analysis)

Report No. 34 November 3 - November 7, 2003

Lakeshore East Project - 221 North Columbus Drive, Chicago, IL

***Note: All samples on this page were analyzed after 4 days to allow for thorium daughter decay

				Flow	Total	Total		Gross	Bkg		Sample	% of
Date	}			Rate	Time	Sample	Analysis	Counts	Counts	Net	Concentration	DAC
Collected	Name	Sample ID	PAM#	(lpm)	Sampled	Volume (ml)	Date	(30 min)	(30 min)	CPM	(uCl/ml)	

No 4 day analysis of PAM's required for this monitoring period

Occupational Dose Limit for Occupational Radiation Exposure = 5 rem Total Effective Dose Equivalent

2000 DAC-Hours = 5 rem

DAC (Derived Air Concentration) for Th-232 = 5E-13uCi/ml

Administrative Site Limit for Occupational Exposure = 30% Th-232 DAC = 1.5E-13 uCi/ml

1

THE

NFRASTRUCTURE

MPERATIVE

F

APPENDIX F

Equipment Release Survey Results

Lakeshore East Project

SURVEY REFERENCE #:

003

DATE OF SURVEY:

4/10/03

NAME OF SURVEYOR:

Joel Alrecke

SURVEY METER IDENTIFICATION:

Mfg: Ludlum

Background Reading:

O, Oa mR/hr

Model: //4 >50

Serial:

INSTRUMENT ID:

Mfg: Ludium

Background Reading: o, 4 cpm

Model: 2200 (scaler) / 43-10 (alpha)

Efficiency: (557 % MDA: 87 7 dpm

Serial: 102770/PR113195-

Description (attached sketch if needed) (Area, equipment, vehicle, materials, etc.)	Item #	Gross mR/hr	Gross cpm	dpm per 100 sq. cm
			•	
Budron Boutson (to be relessed				
JEFF Yoursel		,02	/	168
right trend		,02	0	
Lucket		٠٥٦		1.68
Redros Front Fort forster				
left 5.4		107	0	0
right side		دن.		0
Suchet		, , 2		1.68
	<u></u>	-		-

Lakeshore East Project

004 **SURVEY REFERENCE #:**

4/15/03 DATE OF SURVEY:

Jerry Krene NAME OF SURVEYOR:

SURVEY METER IDENTIFICATION:

Mfg: Ludlum

Background Reading: O, O, mR/hr

Model:

Serial: NA

NA Committee on March Committee on Constant Cons

INSTRUMENT ID:

Mfg: Ludlum

Background Reading: 0, 4

Model: 2200 (scaler) / 43-10 (alpha)

Efficiency: パケン%

Serial: 102770/PR 113185

MWA: \$7/ dpm				
Description (attached sketch if needed)	Item	Gross	Gross	dpm per
(Area, equipment, vehicle, materials, etc.)	#	mR/hr	cpm	100 sq. cm
Bedrag book hor which was				
mouted to Egyponent years	ļ		,	
in best Greyo 4/0				
ge Hansitan Note Liges	ļ			
of suctive contents was				
of suctive contoniation was				
- decastamental				
left form		۲٥٠		168
Cogso toard		707	0	0
Outs of lacket		-01		1.68
enede beter		<u></u>	2	4 VF
F. Survey Could per Jean ton	<u> </u>			
Form Filled out by Enthance per graffeed in Ofther form				
- DES GARLAND IN CAHET				
Fell Lola Lateslone For				

Lakeshore East Project

SURVEY REFERENCE #: OOJ

DATE OF SURVEY: 7/3/03

NAME OF SURVEYOR: To OBOR

SURVEY METER IDENTIFICATION: Mfg: Ludlum

Background Reading: 0,02 mR/hr Model: 14C

Serial: //4750

INSTRUMENT ID: Mfg: Ludlum

Background Reading: cpm Model: 2200 (scaler) / 43-10 (alpha)

Efficiency: % Serial: /22770 PR 1/3/95 - MDA: 0.00 dpm

Description (attached sketch if needed) (Area, equipment, vehicle, materials, etc.)	Item #	Gross mR/hr	Gross cpm	dpm per 100 sq. cm
Ridge Berbler (to be seen and		, , , ,	оры	200 (4)
Budgen Button (to be compared				
· · · · · · · · · · · · · · · · · · ·				
Jeff trend right trend Sucket		.07		1.68
right freid		ر ده ر	/	1.68
Sicket		.04		1.68
	4	, o 2		
	 	 -		
	-			-
				-
				
	 			
	 			-
	 	-		+
	+			
	-			

Lakeshore East Project

SURVEY REFERENCE #: 006

DATE OF SURVEY: 8/25/03

NAME OF SURVEYOR: 6/600 Huber

SURVEY METER IDENTIFICATION:

Mfg: Ludlum

Background Reading: 0.02 mR/hr

Model: 14 C

95059 Serial:

INSTRUMENT ID:

Mfg: Ludlum

Background Reading: Cpm

Model: 2200 (scaler) / 43-10 (alpha)

Efficiency: 35.7% MDA: 87/ dom

Serial: 102770 / PR113195

Description (attached sketch if needed)	Item	Gross	Gross	dpm per
(Area, equipment, vehicle, materials, etc.)	#	mR/hr	cpm	100 sq. cm
Budion Backfor 1= release For				
Unrestruted use				
Left Tourd Light trans Sucket extra VE Sucket in de		000	/	/.68 /.68
Cist taid		0.02	<u>/</u>	1.68
5-cket enroll		0.02		0
Sucket in de		0.03		1.68
		 		
		ļi		
	<u> </u>	 		
		 		
,				
V		 		
		 - 		
		 		-
		 		-
		-		
		 		

Lakeshore East Project

SURVEY REFERENCE #: 007

11/7/03 DATE OF SURVEY:

NAME OF SURVEYOR: G. H.L.

SURVEY METER IDENTIFICATION:

Mfg: Ludlum

Background Reading: 🗢 💃 mR/hr

Model: 14C

Serial: 95059

INSTRUMENT ID:

Mfg: Ludlum

Background Reading: O. Tepm

Model: 2200 (scaler) / 43-10 (alpha)

Efficiency: ジン % MDA: x, 7/ dpm

Serial: 102770 / PR 113/95

Description (attached sketch if needed)	Item	Gross	Gross	dpm per
(Area, equipment, vehicle, materials, etc.)	#	mR/hr	cpm	100 sq. cm
Brether - referse for unrest-che use				
	-			
left trend		.02		1.68
Cisht Yourd		٠-٠		1.68
Suppr-at		.02	. 0	0
Suchet - in				1.68
				
				ļ
	1			<u> </u>
	ļ			
	 -			
	ļ			
	 - 			
	 			
	 			<u> </u>

1

THE

NFRASTRUCTURE

MPERATIVE

G

APPENDIX G

Film Badge Results

STAN A HUBER CON INC ATTN STAN HUBER 200 N CEDAR ROAD NEW LENOX IL 60451

LANLAUER ®

Landauer, Inc. 2 Science Road Glenwood, Illinois 60425-1586 Telephone: (708)755-7000 Facsimile: (708)755-7016 www.landauerinc.com

RADIATION DOSIMETRY REPORT

ACCOUNT NO.	SERIES CODE	ANALYTICAL WORK ORDER	REPORT DATE	DOSIMETER RECEIVED		PAGE NO.
67627	NL1	0310830251	04/24/03	04/18/03	4	1 OF 1

JER 3ER	NAME			TER		RADIATION QUALITY			T (MREM) NN BELOW		RLY ACCU			AR TO DA		DOSE E	LIFETIME QUIVALEN	T (MREM)	ORDS YEAR	INCEPTION
NUMBER	ID NUMBER	BIRTH DATE	SEX	DOSIMETER	USE	RADIA QUAI	DEEP	EYE LDE	SHALLOW SDE	DEEP DDE	EYE LDE	SHALLOW SDE	DEEP DDE	EYE LDE	SHALLOW SDE	DEEP DDE	EYE LDE	SHALLOW SDE	PECC FOR	INCEP DATE (
NL 1	CONTROL		المهاري المهارية المهارية المساولات) (CNTRL				M				kora disek	Talaportaga Carrier Carrier	100	han detain to		**************************************		10/78
135	VISITOR			-			A SECTION M	N	M	M	М	М	М	N A	M M	2	2 16 2			12/00
137	VISITOR		70)	P	WHBODY		M	•	M	6	6	6	6	6	6	11	10	11	3	12/00
	VISITOR				WHBQDY CHEST		M	Name of the last	M	M	M	М	M	M	М	18				12/00
	VISITOR		24 (1.4)	P	WHBODY		M	1	4 M	М	М	(M	M	M	M	M	M		12/00
147	VISITOR	~ <u></u>			WHBODY		М	,	M Second Control	М	M	М	М	M	М	М	M	M	3	10/01
	VISITOR			P.	WHBODY CHEST		M		M	M	М	M	M		M	13				10/01
151	VISITOR				CHEST NOTE		UNUSED				1 L-3-7 5 11		A CONTRACTOR			M	M	M	3	10/01
								<u>.</u>												

MINIMAL REPORTING SERVICE OF 1 MREM

QUALITY CONTROL RELEASE: DRB

1 - PR 7717 - RPT130 - N1

- 10851

TAH	HUB	ER	CON	INC
KIT	\$ TAN	HU	ER	
88 1	 COA	8 1	MAR	

EH LENOX

IL 60451

LANDAUER,	INC.	2 SCIENCE ROAD	GLENWOOD,	ILLINOIS	60425 —	1586

IMPORTANT: WHEN REQUESTING ANY CHANGER, ADDITIONS, OR DELETIONS, PLEASE MAKE THEM ON THIS PORM.

CHANGES TO BE EFFECTIVE FOR YOUR MEXT WEAR DATE

EOOS/70/ED MÁIT REILLI ON CORRES BOUNTED BY HOLEN THÂN

PLEASE DO NOT DUPLICATE CHANGES REQUESTED DURING PRECEDING 20 DAYS.

DO MOT RETURN CHANGE REQUESTS WITH YOUR DOSMETERS SINCE THIS DELAYS HANDLING.

Telephone: (800) 323 – 8830 Facsimile: (708) 755 – 7016

PLACE "D" IN DELETE

USE REVERSE SIDE FOR ADDITIONS AND OTHER CHANGES

* Holder included.

ACCT. NO.	SERIES	EXPOSURE PERIOD	BADGE DATE
67627	HL1	1 HONTH H	03-01-03

SERIES NAME

SERVICE CHANGE ORDER

53404103953

J35-4d \$3484183953 34 /

				<u> </u>			_	
LETE			BADGE TYPE	NAME - MAXIMUM OF \$4 LETTER\$ & \$PACES	ID NUMBER	SERIAL NUMBER	8EX	BIRTH DATE MO DAY YEAR
		00HL1	P1	CONTROL		4213461D		
		00134	P1	VISITOR Gless Huber V		4213462D		
		00135	P1	VISITOR TON OBCIES V		42134630		
		00136	P1	VISITOR JETTY KNOTE V		4213484D		
		00137	P1	VISITOR Lindsey Assim		42134650		

67627 NL1

LETE CHANCE SEI		PARTICIPANT NUMBER	BADGE	NAME - MAXIMUM OF 34 LETTERS	4 SPACES	ID NUMBER	SERIAL NUMBER	\$EX	BIRTH DATE MO. DAY YEAR	
		99138	P1	VISITOR July Andrews			42134660			ļ
		90139	P1	VISITOR TOLL AND ONLY VISITOR RICL BEIGGING	. /		42134670			
		60140	P1	VISITOR			4213468D			
		00141	P1	VISITOR Steve to-when	/		42134690			}
		90144	P1	VISITOR FOR REUSCH			42134790			1
		00145	P1	VISITOR Odell Morg			42134710] .
		00146	P1	VISITOR Jim Aropect	v		4213472D			1
		90147	P1	VISITOR Grea Patterson	V		42134730]
		90148	P1	VISITOR JUE YEdnock			4213474D]
	<u> </u>	90149	P1	VISITOR Acmande R.	42V_		42134750			}
		90150	P1	VISITOR			4213476D			7
		00151	P1	VISITOR			42134770			1
	Ţ									1
								T		1
	1					1		\top	 	1
	1							1-	 	7

THE

NFRASTRUCTURE

MPERATIVE

Н

APPENDIX H

Shipping Manifests

WILL BE PROVIDED ON CD FOR FINAL